A practical methodology to perform global sensitivity analysis for 2D hydrodynamic computationally intensive simulations
Sensitivity analysis is a commonly used technique in hydrological modeling for different purposes, including identifying the influential parameters and ranking them. This paper proposes a simplified sensitivity analysis approach by applying the Taguchi design and the ANOVA technique to 2D hydrodynamic flood simulations, which are computationally intensive. This approach offers an effective and practical way to rank the influencing parameters, quantify the contribution of each parameter to the variability of the outputs, and investigate the possible interaction between the input parameters. A number of 2D flood simulations have been carried out using the proposed combinations by Taguchi (L27…
Representation of 100-year design rainfall uncertainty in catchment-scale flood modeling: A MCMC Bayesian approach
Paid open access