An Experimental and Computational Study on the Effect of Al(OiPr)3 on Atom-Transfer Radical Polymerization and on the Catalyst-Dormant Chain Halogen Exchange
International audience; Compound Al(OiPr)3 is shown to catalyze the halide-exchange process leading from [Mo(Cp)Cl2(iPrN=CH-CH=NiPr)] and CH3CH(X)COOEt (X=Br, I) to the mixed-halide complexes [Mo(Cp)ClX(iPrN=CH-CH=NiPr)]. On the other hand, no significant acceleration is observed for the related exchange between [MoX3(PMe3)3] (X=Cl, I) and PhCH(Br)CH3, by analogy to a previous report dealing with the RuII complex [RuCl2(PPh3)3]. A DFT computation study, carried out on the model complexes [Mo(Cp)Cl2(PH3)2], [MoCl3(PH3)3], and [RuCl2(PH3)3], and on the model initiators CH3CH(Cl)COOCH3, CH3Cl, and CH3Br, reveals that the 16-electron RuII complex is able to coordinate the organic halide RX in a…
The Radical Trap in Atom Transfer Radical Polymerization Need Not Be Thermodynamically Stable. A Study of the MoX3(PMe3)3 Catalysts
The molybdenum(III) coordination complexes MoX(3)(PMe(3))(3) (X = Cl, Br, and I) are capable of controlling styrene polymerization under typical atom transfer radical polymerization (ATRP) conditions, in conjunction with 2-bromoethylbenzene (BEB) as an initiator. The process is accelerated by the presence of Al(OPr(i))(3) as a cocatalyst. Electrochemical and synthetic studies aimed at identifying the nature of the spin trap have been carried out. The cyclic voltammogram of MoX(3)(PMe(3))(3) (X = Cl, Br, I) shows partial reversibility (increasing in the order ClBrI) for the one-electron oxidation wave. Addition of X(-) changes the voltammogram, indicating the formation of MoX(4)(PMe(3))(3) f…
How the interplay of different control mechanisms affects the initiator efficiency factor in controlled radical polymerization: An investigation using organometallic MoIII-based catalysts
International audience; Compound CpMoI2(iPr2dad) (iPr2dad = iPrNdouble bondCHsingle bondCHdouble bondNiPr), obtained by halide exchange from CpMoCl2(iPr2dad) and NaI, has been isolated and characterized by EPR spectroscopy, cyclic voltammetry, and X-ray crystallography. Its action as a catalyst in atom transfer radical polymerization (ATRP) and as a spin trap in organometallic radical polymerization (OMRP) of styrene and methyl acrylate (MA) monomers has been investigated and compared with that of the dichloro analogue. Compound CpMoCl2(iPr2dad) catalyzes the ATRP of styrene and MA with low efficiency factors f (as low as 0.37 for MA and ethyl 2-chloropropionate as initiator), while it irre…
Mixed Titanium–Hafnium Chloridometallate Complexes
The addition of either NEt 3 BzCl or [Ph 3 PNPPh 3 ]Cl (1 equiv. chloride per metal) to a 1:1 mixture of HfCl 4 and TiCl 3 in SOCl 2 results in Ti oxidation and leads to the corresponding salts of the [TiHfCl 10 ] 2- ion. A solution IR investigation in the v(M-Cl) region indicates that this ion is in equilibrium with the homodimetallic [Ti 2 Cl 10 ] 2- and [Hf 2 Cl 10 ] 2- ions. An X-ray study of the NEt 3 Bz + salt reveals an edge-sharing bioctahedral dianion sitting on a crystallographic inversion centre. The crystal is a solid solution of different species with compositional disorder at the metal site, each metal position having the occupancy Ti 0.685 Hf 0.315 . The M-M and M-Cl distance…