0000000000391808
AUTHOR
Giovanna Cerami
showing 5 related works from this author
Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology
1994
We use Morse theory to estimate the number of positive solutions of an elliptic problem in an open bounded setΩ ∉ ℝN. The number of solutions depends on the topology ofΩ, actually onP t (Ω), the Poincare polynomial ofΩ. More precisely, we obtain the following Morse relations: $$\sum\limits_{u \in K} {t^{\mu \left( u \right)} } = tP_t \left( \Omega \right) + t^2 [P_t \left( \Omega \right) - 1] + t\left( {1 + t} \right)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{O} \left( t \right)$$ , where $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{O} \left( t \right)$$ is a polynomial with non-negative integer coefficients,K is the set of positive solutions …
Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains
1995
Multiple positive solutions for singularly perturbed elliptic problems in exterior domains
2003
Abstract The equation − e 2 Δ u + a e ( x ) u = u p −1 with boundary Dirichlet zero data is considered in an exterior domain Ω = R N ⧹ ω ( ω bounded and N ⩾2). Under the assumption that a e ⩾ a 0 >0 concentrates round a point of Ω as e →0, that p >2 and p N /( N −2) when N ⩾3, the existence of at least three positive distinct solutions is proved.
High energy positive solutions for mixed and neumann elliptic problems with critical nonlinearity
1997
Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents
1984
Abstract In this paper we study the existence of nontrivial solutions for the boundary value problem { − Δ u − λ u − u | u | 2 ⁎ − 2 = 0 in Ω u = 0 on ∂ Ω when Ω⊂Rn is a bounded domain, n ⩾ 3, 2 ⁎ = 2 n ( n − 2 ) is the critical exponent for the Sobolev embedding H 0 1 ( Ω ) ⊂ L p ( Ω ) , λ is a real parameter. We prove that there is bifurcation from any eigenvalue λj of − Δ and we give an estimate of the left neighbourhoods ] λ j ⁎ , λj] of λj, j∈N, in which the bifurcation branch can be extended. Moreover we prove that, if λ ∈ ] λ j ⁎ , λj[, the number of nontrivial solutions is at least twice the multiplicity of λj. The same kind of results holds also when Ω is a compact Riemannian manif…