0000000000391808

AUTHOR

Giovanna Cerami

showing 5 related works from this author

Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology

1994

We use Morse theory to estimate the number of positive solutions of an elliptic problem in an open bounded setΩ ∉ ℝN. The number of solutions depends on the topology ofΩ, actually onP t (Ω), the Poincare polynomial ofΩ. More precisely, we obtain the following Morse relations: $$\sum\limits_{u \in K} {t^{\mu \left( u \right)} } = tP_t \left( \Omega \right) + t^2 [P_t \left( \Omega \right) - 1] + t\left( {1 + t} \right)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{O} \left( t \right)$$ , where $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{O} \left( t \right)$$ is a polynomial with non-negative integer coefficients,K is the set of positive solutions …

Polynomial (hyperelastic model)IntegerApplied MathematicsBounded functionDomain (ring theory)TopologyOmegaAnalysisMorse theoryMathematicsCalculus of Variations and Partial Differential Equations
researchProduct

Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains

1995

Pure mathematicslack of emptinesspositive solutionsApplied MathematicsMultiplicity resultsNonlinear elliptic Dirichlet problemsMathematical analysisDirichlet L-functionvariational methodsDirichlet's energyDirichlet distributionExterior domainsDirichlet kernelsymbols.namesakeDirichlet's principlesymbolsExterior domains; lack of emptiness; Nonlinear elliptic Dirichlet problems; positive solutions; variational methodsAnalysisDirichlet seriesMathematics
researchProduct

Multiple positive solutions for singularly perturbed elliptic problems in exterior domains

2003

Abstract The equation − e 2 Δ u + a e ( x ) u = u p −1 with boundary Dirichlet zero data is considered in an exterior domain Ω = R N ⧹ ω ( ω bounded and N ⩾2). Under the assumption that a e ⩾ a 0 >0 concentrates round a point of Ω as e →0, that p >2 and p N /( N −2) when N ⩾3, the existence of at least three positive distinct solutions is proved.

Dirichlet problemPure mathematicsPartial differential equationApplied MathematicsMathematical analysisZero (complex analysis)Boundary (topology)Exterior domains; lack of compactness; multiplicity of solutionslack of compactnessDirichlet distributionExterior domainsmultiplicity of solutionssymbols.namesakeBounded functionDomain (ring theory)symbolsMathematical PhysicsAnalysisMathematics
researchProduct

High energy positive solutions for mixed and neumann elliptic problems with critical nonlinearity

1997

High energyNonlinear systemPartial differential equationGeneral MathematicsApplied mathematicsAnalysisMathematics
researchProduct

Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents

1984

Abstract In this paper we study the existence of nontrivial solutions for the boundary value problem { − Δ u − λ u − u | u | 2 ⁎ − 2 = 0 in Ω u = 0 on ∂ Ω when Ω⊂Rn is a bounded domain, n ⩾ 3, 2 ⁎ = 2 n ( n − 2 ) is the critical exponent for the Sobolev embedding H 0 1 ( Ω ) ⊂ L p ( Ω ) , λ is a real parameter. We prove that there is bifurcation from any eigenvalue λj of − Δ and we give an estimate of the left neighbourhoods ] λ j ⁎ , λj] of λj, j∈N, in which the bifurcation branch can be extended. Moreover we prove that, if λ ∈ ] λ j ⁎ , λj[, the number of nontrivial solutions is at least twice the multiplicity of λj. The same kind of results holds also when Ω is a compact Riemannian manif…

Pure mathematicsRiemannian manifoldApplied MathematicsMathematical analysisEigenvalueCritical Sobolev exponentMultiplicity (mathematics)Critical pointsRiemannian manifoldSobolev spaceBounded functionBoundary value problem; Critical Sobolev exponent; Bifurcation; Critical points; Eigenvalue; Variational problem; Riemannian manifoldBifurcationVariational problemBoundary value problemCritical exponentBoundary value problemMathematical PhysicsAnalysisEigenvalues and eigenvectorsBifurcationMathematics
researchProduct