0000000000391875

AUTHOR

T. Krogulski

showing 9 related works from this author

The Study of Prompt and Delayed Muon Induced Fission; II. Mean life times of negative muons bound to 237Np, 242Pu and 244Pu

1988

The mean life times of negative muons bound to actinide nuclei have been measured by detecting the time difference between a stopped muon and the arrival of fragments from delayed fission after muon capture. The deduced capture rates c are 1.392(4)·107/s for237Np, 1.290(7)·107/s for242Pu and 1.240(7)·107/s for244Pu. The results are compared with published data for the fission and the neutron decay channels and for the electron decay of the bound muon. Including a former measurement of c for239Pu, an isotopic dependence of the muon capture rates in the Pu isotopes is clearly observed.

Nuclear reactionPhysicsNuclear and High Energy PhysicsMuonIsotopeFissionPhysics::Instrumentation and DetectorsNuclear TheoryElectronMuon captureNuclear physicsNuclear fusionNeutronHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

Effects of weakly coupled channels on quasielastic barrier distributions

2009

Heavy-ion collisions often produce fusion barrier distributions with structures displaying a fingerprint of couplings to highly collective excitations. Similar distributions can be obtained from large-angle quasielastic scattering, although in this case, the role of the many weak direct-reaction channels is unclear. For $^{20}\mathrm{Ne}+^{90}\mathrm{Zr}$, we have observed the barrier structures expected for the highly deformed neon projectile; however, for $^{20}\mathrm{Ne}+^{92}\mathrm{Zr}$, we find significant extra absorption into a large number of noncollective inelastic channels. This leads to smearing of the barrier distribution and a consequent reduction in the ``resolving power'' o…

PhysicsNuclear and High Energy PhysicsQuasielastic scattering010308 nuclear & particles physicschemistry.chemical_elementFusion barrier[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNeonDistribution (mathematics)chemistry0103 physical sciencesQuasiparticleAbsorption (logic)Atomic physics010306 general physicsNuclear Experiment
researchProduct

HOW MANY FUSION BARRIERS?

2004

Fusion barrier distributions for the 20 Ne + 112,116,118 Sn systems have been extracted from quasi-elastic scattering cross sections measured at the Warsaw HIL Cyclotron. Results are compared to coupled-channels calculations performed with the CCFULL code. The overall widths of the distributions are reproduced on taking account of the low-lying collective states of the target and projectile but some puzzling discrepancies in their shapes remain to be explained.

PhysicsNuclear reactionNuclear physicsNuclear and High Energy PhysicsFusionProjectileNucleosynthesisScatteringlawCyclotronGeneral Physics and AstronomyFusion barrierlaw.inventionInternational Journal of Modern Physics E
researchProduct

Smoothing of structure in the fusion and quasielastic barrier distributions for the ^{20}Ne + ^{208}Pb system

2012

We present simultaneously measured barrier distributions for the 20Ne + 208Pb system derived from largeangle quasielastic scattering and fusion, in the latter case by means of the detection of fission fragments. Both distributions turned out to be smooth, in spectacular disagreement with the results of standard coupled-channels calculations. Namely, they do not posses the strong structure expected from coupled-channels calculations, even if apparently they take into account explicitly all relevant strong couplings. This points to the importance of weak channels, i.e., transfer reactions and scattering connected with noncollective excitations. peerReviewed

Theoretical nuclear physics
researchProduct

Absence of structure in the $^{20,22}$Ne + $^{118}$Sn quasi-elastic barrier distribution

2005

Abstract Motivated by the extreme deformation parameters of the projectile, we have measured quasi-elastic scattering for 20 Ne +  118 Sn. In contrast to calculations based on known collective states, the experimental barrier distribution is structureless. A comparison with the system 22 Ne +  118 Sn shows that this smoothing is unlikely to be due to nucleon- or α -transfer channels, and is more likely to be due to coupling to many other weak channels.

CouplingNuclear reactionPhysicsNuclear and High Energy PhysicsElastic Barrier010308 nuclear & particles physicsScattering22Ne[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesCoupled channelsElectric fieldQuasi-elastic scattering0103 physical sciencesIsotopes of tin20Ne25.70.Bc; 25.70.Hi; 25.70.JjDeformation (engineering)Atomic physics010306 general physicsNucleonCoulomb barrier distribution
researchProduct

Weak channels in backscattering of20Ne onnatNi,118Sn, and208Pb

2012

To further our understanding of the influence of weakly coupled channels on the distribution of Coulomb barrier heights, we have measured transfer cross sections for ${}^{20}$Ne ions backscattered from ${}^{\mathrm{nat}}$Ni, ${}^{118}$Sn, and ${}^{208}$Pb targets at near-barrier energies. The $Q$ value spectrum in the case of ${}^{208}$Pb target has been determined too. The transfer channels appear to be especially important for ${}^{208}$Pb, whose double-closed-shell nature leads to a relatively low level density for noncollective inelastic excitations.

PhysicsNuclear and High Energy PhysicsCoulomb barrierAtomic physicsIonPhysical Review C
researchProduct

Smoothing of structure in the fusion and quasielastic barrier distributions for the20Ne+208Pb system

2012

We present simultaneously measured barrier distributions for the ${}^{20}$Ne $+$ ${}^{208}$Pb system derived from large-angle quasielastic scattering and fusion, in the latter case by means of the detection of fission fragments. Both distributions turned out to be smooth, in spectacular disagreement with the results of standard coupled-channels calculations. Namely, they do not posses the strong structure expected from coupled-channels calculations, even if apparently they take into account explicitly all relevant strong couplings. This points to the importance of weak channels, i.e., transfer reactions and scattering connected with noncollective excitations.

PhysicsNuclear and High Energy PhysicsQuasielastic scatteringFusionScatteringFissionStructure (category theory)Atomic physicsSmoothingPhysical Review C
researchProduct

Weak channels in backscattering of ^{20}Ne on ^{nat}Ni, ^{118}Sn, and ^{208}Pb

2012

To further our understanding of the influence of weakly coupled channels on the distribution of Coulomb barrier heights, we have measured transfer cross sections for 20Ne ions backscattered from natNi, 118Sn, and 208Pb targets at near-barrier energies. The Q value spectrum in the case of 208Pb target has been determined too. The transfer channels appear to be especially important for 208Pb, whose double-closed-shell nature leads to a relatively low level density for noncollective inelastic excitations. peerReviewed

Theoretical nuclear physics
researchProduct

Electromagnetic and nuclear fission of238U in the reaction of 100, 500, and 1000 A�MeV208Pb with238U

1994

The folding- and azimuthal-angle and velocity distributions for the238U fission fragments have been measured in reactions with 100, 500, and 1000 A·MeV208Pb. These distributions were used to decompose the fission cross section into its electromagnetic and nuclear components. The fraction of electromagnetic fission was found to be 0.16±0.07, 0.48±0.08, and 0.60±0.04, respectively. The electromagnetic fission cross section as a function of the208Pb nucleus energy is compared with theoretical predictions. The measured fission cross section from nuclear reactions (≈1.5 b) is approximately constant between 100 and 1000 A·MeV.

Nuclear reactionPhysicsNuclear and High Energy PhysicsCold fissionCluster decayFissionNuclear TheoryAstrophysics::Cosmology and Extragalactic AstrophysicsNuclear physicsCross section (physics)Nuclear fissionNuclear fusionHigh Energy Physics::ExperimentNeutronAstrophysics::Earth and Planetary AstrophysicsNuclear ExperimentZeitschrift f�r Physik A Hadrons and Nuclei
researchProduct