0000000000391917
AUTHOR
Y. Sobolev
The magnetic shielding for the neutron decay spectrometer aSPECT
Abstract Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer a SPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of a SPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for a S…
The Proton Spectrum in Neutron Beta Decay: Latest Results with the aSPECT Spectrometer
Abstract The purpose of the neutron decay spectrometer aSPECT is to determine the antineutrino electron angular correlation coefficient a with high precision. Latest measurements with aSPECT were performed during April/May 2008 at the Institut Laue-Langevin in Grenoble, France. In this paper we give a report on the experiment and the status of the ongoing data analysis.
Neutron halos in excited states of 12 B
An experiment was done to search for states with a neutron halo in 12 B. The measurements were carried out at the cyclotron of the University of Jyvaskyla (Finland) using Large Scattering Chamber (LSC). The idea of the work was to search for two states with the expected neutron halo, 1¯ and 2¯. Differential cross sections with excitation of 12 B states, including abovementioned states, were observed. The preliminary calculations on halo radii by the method of asymptotic normalization coefficients for the 2¯ and 1¯ states which are in a discrete spectrum gave following values: 5.6 fm and 7.4 fm, which is much larger than the radius of the valence neutron in the ground state. But strictly the…
He-3 spin filter for neutrons
The strongly spin-dependent absorption of neutrons in nuclear spin-polarized (3)He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable (3)He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A sh…
Comparison of ultracold neutron sources for fundamental physics measurements
Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.
Trial for the long neutron counter TETRA using $^{96,97}$Rb radioactive sources
International audience; The TETRA long neutron counter is operated at ALTO ISOL facility behind the PARRNe mass separator. TETRA has been proven to be a unique instrument for measurements of β-decay properties of short-lived neutron-rich nuclei having applications for the nuclear structure and/or astrophysical r-process calculations. A proper calibration of TETRA can allow validation of the experimental procedure used for determination of β-delayed one-neutron emission probabilities (P1n). It requires the use of a well-known β-neutron decaying radioactive source which can be only produced and measured on-line due to its short half-life. Thus, the present paper reports on measurements of P1n…
HP-Xe to go: Storage and Transportation of Hyperpolarized 129-Xe
Abstract Recently the spin–lattice relaxation time T 1 of hyperpolarized (HP)- 129 Xe was significantly improved by using uncoated and Rb-free storage vessels of GE180 glass. For these cells, a simple procedure was established to obtain reproducible wall relaxation times of about 18 h. Then the limiting relaxation mechanism in pure Xe is due to the coupling between the nuclear spins and the angular momentum of the Xe–Xe van-der-Waals-molecules. This mechanism can be significantly reduced by using different buffer gases of which CO 2 was discovered to be the most efficient so far. From these values, it was estimated that for a 1:1 mixture of HP-Xe with CO 2 a longitudinal relaxation time of …
Direct Experimental Verification of Neutron Acceleration by the Material Optical Potential of SolidH22
We have measured the acceleration of neutrons by the material optical potential of solid $^{2}\mathrm{H}_{2}$. Using a gravitational spectrometer, we find a minimal kinetic energy ${E}_{c}=(99\ifmmode\pm\else\textpm\fi{}7)\text{ }\text{ }\mathrm{neV}$ of neutrons from a superthermal ultracold neutron (UCN) source with solid $^{2}\mathrm{H}_{2}$ as an UCN converter. The result is in excellent agreement with theoretical predictions, ${E}_{c}=106\text{ }\text{ }\mathrm{neV}$.