0000000000392985

AUTHOR

Hugo Lewi Hammer

showing 11 related works from this author

Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental <italic>Discretized</italic> Paradigm

2018

Traditional pattern classification works with the moments of the distributions of the features and involves the estimation of the means and variances. As opposed to this, more recently, research has indicated the power of using the quantiles of the distributions because they are more robust and applicable for non-parametric methods. The estimation of the quantiles is even more pertinent when one is mining data streams. However, the complexity of quantile estimation is much higher than the corresponding estimation of the mean and variance, and this increased complexity is more relevant as the size of the data increases. Clearly, in the context of infinite data streams, a computational and sp…

General Computer ScienceDiscretizationLearning automataData stream miningComputer scienceGeneral EngineeringEstimatorContext (language use)02 engineering and technologyRobustness (computer science)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingGeneral Materials ScienceAlgorithmQuantileIEEE Access
researchProduct

Improving Classification of Tweets Using Linguistic Information from a Large External Corpus

2016

The bag of words representation of documents is often unsatisfactory as it ignores relationships between important terms that do not co-occur literally. Improvements might be achieved by expanding the vocabulary with other relevant word, like synonyms.

VocabularyInformation retrievalbusiness.industryComputer sciencemedia_common.quotation_subjectRepresentation (systemics)computer.software_genreRule-based machine translationBag-of-words modelArtificial intelligencebusinesscomputerNatural language processingWord (computer architecture)media_common
researchProduct

On the classification of dynamical data streams using novel “Anti-Bayesian” techniques

2018

Abstract The classification of dynamical data streams is among the most complex problems encountered in classification. This is, firstly, because the distribution of the data streams is non-stationary, and it changes without any prior “warning”. Secondly, the manner in which it changes is also unknown. Thirdly, and more interestingly, the model operates with the assumption that the correct classes of previously-classified patterns become available at a juncture after their appearance. This paper pioneers the use of unreported novel schemes that can classify such dynamical data streams by invoking the recently-introduced “Anti-Bayesian” (AB) techniques. Contrary to the Bayesian paradigm, tha…

Dynamical systems theoryData stream miningComputer scienceBayesian probabilityEstimator02 engineering and technologycomputer.software_genreSynthetic dataArtificial IntelligenceRobustness (computer science)020204 information systemsSignal ProcessingOutlier0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionData miningBayesian paradigmAlgorithmcomputerSoftwareQuantilePattern Recognition
researchProduct

A Novel Clustering Algorithm based on a Non-parametric "Anti-Bayesian" Paradigm

2015

The problem of clustering, or unsupervised classification, has been solved by a myriad of techniques, all of which depend, either directly or implicitly, on the Bayesian principle of optimal classification. To be more specific, within a Bayesian paradigm, if one is to compare the testing sample with only a single point in the feature space from each class, the optimal Bayesian strategy would be to achieve this based on the distance from the corresponding means or central points in the respective distributions. When this principle is applied in clustering, one would assign an unassigned sample into the cluster whose mean is the closest, and this can be done in either a bottom-up or a top-dow…

Fuzzy clusteringbusiness.industryComputer scienceCorrelation clusteringConstrained clusteringPattern recognitioncomputer.software_genreData stream clusteringCURE data clustering algorithmCanopy clustering algorithmAffinity propagationArtificial intelligenceData miningbusinessCluster analysiscomputer
researchProduct

Mitigating DDoS using weight‐based geographical clustering

2020

Distributed denial of service (DDoS) attacks have for the last two decades been among the greatest threats facing the internet infrastructure. Mitigating DDoS attacks is a particularly challenging task as an attacker tries to conceal a huge amount of traffic inside a legitimate traffic flow. This article proposes to use data mining approaches to find unique hidden data structures which are able to characterize the normal traffic flow. This will serve as a mean for filtering illegitimate traffic under DDoS attacks. In this endeavor, we devise three algorithms built on previously uncharted areas within mitigation techniques where clustering techniques are used to create geographical clusters …

Anomaly intrusion detectionsComputer Networks and CommunicationsComputer scienceComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKSDenial-of-service attackFault tolerancecomputer.software_genreClustering techniquesData segmentComputer Science ApplicationsTheoretical Computer ScienceComputational Theory and MathematicsMitigating DDoS attacksCloud burstingData miningCluster analysisWeight based dosingcomputerSoftwareAddress clusteringMitigation techniquesConcurrency and Computation: Practice and Experience
researchProduct

On using novel “Anti-Bayesian” techniques for the classification of dynamical data streams

2017

The classification of dynamical data streams is among the most complex problems encountered in classification. This is, firstly, because the distribution of the data streams is non-stationary, and it changes without any prior “warning”. Secondly, the manner in which it changes is also unknown. Thirdly, and more interestingly, the model operates with the assumption that the correct classes of previously-classified patterns become available at a juncture after their appearance. This paper pioneers the use of unreported novel schemes that can classify such dynamical data streams by invoking the recently-introduced “Anti-Bayesian” (AB) techniques. Contrary to the Bayesian paradigm, that compare…

QuantilesComputer scienceData stream miningBayesian probability02 engineering and technologyClassificationcomputer.software_genreAnti-Bayesian classificationRobustness (computer science)020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingData miningcomputerBayesian paradigmQuantile2017 IEEE Congress on Evolutionary Computation (CEC)
researchProduct

“Anti-Bayesian” flat and hierarchical clustering using symmetric quantiloids

2017

A myriad of works has been published for achieving data clustering based on the Bayesian paradigm, where the clustering sometimes resorts to Naive-Bayes decisions. Within the domain of clustering, the Bayesian principle corresponds to assigning the unlabelled samples to the cluster whose mean (or centroid) is the closest. Recently, Oommen and his co-authors have proposed a novel, counter-intuitive and pioneering PR scheme that is radically opposed to the Bayesian principle. The rational for this paradigm, referred to as the “Anti-Bayesian” (AB) paradigm, involves classification based on the non-central quantiles of the distributions. The first-reported work to achieve clustering using the A…

Scheme (programming language)Information Systems and ManagementTheoretical computer scienceComputer scienceBayesian principleBayesian probabilityVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412Multivariate normal distribution0102 computer and information sciences02 engineering and technology01 natural sciencesDomain (mathematical analysis)ClusteringTheoretical Computer ScienceArtificial Intelligence0103 physical sciencesCluster (physics)0202 electrical engineering electronic engineering information engineering010306 general physicsCluster analysiscomputer.programming_languageCentroidComputer Science ApplicationsHierarchical clustering010201 computation theory & mathematicsControl and Systems EngineeringAnti-Bayesian classification020201 artificial intelligence & image processingcomputerSoftwareQuantiloidsQuantile
researchProduct

On the Classification of Dynamical Data Streams Using Novel “Anti–Bayesian” Techniques

2018

The classification of dynamical data streams is among the most complex problems encountered in classification. This is, firstly, because the distribution of the data streams is non-stationary, and it changes without any prior “warning”. Secondly, the manner in which it changes is also unknown. Thirdly, and more interestingly, the model operates with the assumption that the correct classes of previously-classified patterns become available at a juncture after their appearance. This paper pioneers the use of unreported novel schemes that can classify such dynamical data streams by invoking the recently-introduced “Anti- Bayesian” (AB) techniques. Contrary to the Bayesian paradigm, that compar…

Anti-Bayesian classificationData streams
researchProduct

Balanced difficulty task finder: an adaptive recommendation method for learning tasks based on the concept of state of flow

2020

An adaptive task difficulty assignment method which we reckon as balanced difficulty task finder (BDTF) is proposed in this paper. The aim is to recommend tasks to a learner using a trade-off between skills of the learner and difficulty of the tasks such that the learner experiences a state of flow during the learning. Flow is a mental state that psychologists refer to when someone is completely immersed in an activity. Flow state is a multidisciplinary field of research and has been studied not only in psychology, but also neuroscience, education, sport, and games. The idea behind this paper is to try to achieve a flow state in a similar way as Elo’s chess skill rating (Glickman in Am Ches…

Stochastic point locationComputer scienceCognitive NeuroscienceGame ranking systemsAnalogyIntelligent tutoring system02 engineering and technologyField (computer science)Intelligent tutoring systemAdjusting delayed matching-to-sampleTask (project management)03 medical and health sciences0302 clinical medicineHuman–computer interaction0202 electrical engineering electronic engineering information engineeringStochastic point locationsVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550State of flowTrueSkillSpaced retrievalComputerized adaptive testingComputingMilieux_PERSONALCOMPUTINGIntelligent tutoring systemsOnline learning020201 artificial intelligence & image processingComputerized adaptive testingState (computer science)Adaptive task difficulties030217 neurology & neurosurgeryResearch ArticleAdaptive task difficultyCognitive Neurodynamics
researchProduct

Higher-Fidelity Frugal and Accurate Quantile Estimation Using a Novel Incremental Discretized Paradigm

2018

Nivå1

researchProduct

Achieving Fair Load Balancing by Invoking a Learning Automata-Based Two-Time-Scale Separation Paradigm.

2020

Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. In this article, we consider the problem of load balancing (LB), but, unlike the approaches that have been proposed earlier, we attempt to resolve the problem in a fair manner (or rather, it would probably be more appropriate to describe it as an ε-fair manner because, although the LB…

Mathematical optimizationLearning automataComputer Networks and Communicationsbusiness.industryStochastic processComputer scienceQuality of serviceResource allocationsCloud computingLoad balancing (computing)Continuous learning automatonsComputer Science ApplicationsArtificial IntelligenceServerResource allocationFair load balancingbusinessVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550SoftwareIEEE transactions on neural networks and learning systems
researchProduct