0000000000393580

AUTHOR

Daniel Matthes

A derivation of the isothermal quantum hydrodynamic equations using entropy minimization

Isothermal quantum hydrodynamic equations of order O(h 2 ) using the quantum entropy minimization method recently developed by Degond and Ringhofer are derived. The equations have the form of the usual quantum hydrodynamic model including a correction term of order O(h 2 ) which involves the vorticity. If the initial vorticity is of order 0(h), the standard model is obtained up to order O(h 4 ). The derivation is based on a careful expansion of the quantum equilibrium obtained from the entropy minimization in powers of h 2 .

research product

Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results

A numerical scheme is developed for solution of the Goursat problem for a class of nonlinear hyperbolic systems with an arbitrary number of independent variables. Convergence results are proved for this difference scheme. These results are applied to hyperbolic systems of differential-geometric origin, like the sine-Gordon equation describing the surfaces of the constant negative Gaussian curvature (K-surfaces). In particular, we prove the convergence of discrete K--surfaces and their Backlund transformations to their continuous counterparts. This puts on a firm basis the generally accepted belief (which however remained unproved untill this work) that the classical differential geometry of…

research product

An algorithmic construction of entropies in higher-order nonlinear PDEs

A new approach to the construction of entropies and entropy productions for a large class of nonlinear evolutionary PDEs of even order in one space dimension is presented. The task of proving entropy dissipation is reformulated as a decision problem for polynomial systems. The method is successfully applied to the porous medium equation, the thin film equation and the quantum drift–diffusion model. In all cases, an infinite number of entropy functionals together with the associated entropy productions is derived. Our technique can be extended to higher-order entropies, containing derivatives of the solution, and to several space dimensions. Furthermore, logarithmic Sobolev inequalities can …

research product

Convergence in discrete Cauchy problems and applications to circle patterns

A lattice-discretization of analytic Cauchy problems in two dimensions is presented. It is proven that the discrete solutions converge to a smooth solution of the original problem as the mesh size ε \varepsilon tends to zero. The convergence is in C ∞ C^\infty and the approximation error for arbitrary derivatives is quadratic in ε \varepsilon . In application, C ∞ C^\infty -approximation of conformal maps by Schramm’s orthogonal circle patterns and lattices of cross-ratio minus one is shown.

research product