0000000000393580

AUTHOR

Daniel Matthes

showing 4 related works from this author

A derivation of the isothermal quantum hydrodynamic equations using entropy minimization

2005

Isothermal quantum hydrodynamic equations of order O(h 2 ) using the quantum entropy minimization method recently developed by Degond and Ringhofer are derived. The equations have the form of the usual quantum hydrodynamic model including a correction term of order O(h 2 ) which involves the vorticity. If the initial vorticity is of order 0(h), the standard model is obtained up to order O(h 4 ). The derivation is based on a careful expansion of the quantum equilibrium obtained from the entropy minimization in powers of h 2 .

Minimisation (psychology)Standard Model (mathematical formulation)Classical mechanicsQuantum hydrodynamicsApplied MathematicsComputational MechanicsOrder (ring theory)Von Neumann entropyVorticityQuantumIsothermal processMathematical physicsMathematicsZAMM
researchProduct

Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results

2006

A numerical scheme is developed for solution of the Goursat problem for a class of nonlinear hyperbolic systems with an arbitrary number of independent variables. Convergence results are proved for this difference scheme. These results are applied to hyperbolic systems of differential-geometric origin, like the sine-Gordon equation describing the surfaces of the constant negative Gaussian curvature (K-surfaces). In particular, we prove the convergence of discrete K--surfaces and their Backlund transformations to their continuous counterparts. This puts on a firm basis the generally accepted belief (which however remained unproved untill this work) that the classical differential geometry of…

Mathematics - Differential GeometrySurface (mathematics)Algebra and Number TheoryNonlinear Sciences - Exactly Solvable and Integrable SystemsIntegrable systemDiscretizationApplied MathematicsMathematical analysisHyperbolic manifoldFOS: Physical sciencesNumerical Analysis (math.NA)Nonlinear systemsymbols.namesakeDifferential geometryDifferential Geometry (math.DG)Gaussian curvaturesymbolsFOS: MathematicsMathematics - Numerical AnalysisExactly Solvable and Integrable Systems (nlin.SI)Hyperbolic partial differential equationAnalysisMathematics
researchProduct

An algorithmic construction of entropies in higher-order nonlinear PDEs

2006

A new approach to the construction of entropies and entropy productions for a large class of nonlinear evolutionary PDEs of even order in one space dimension is presented. The task of proving entropy dissipation is reformulated as a decision problem for polynomial systems. The method is successfully applied to the porous medium equation, the thin film equation and the quantum drift–diffusion model. In all cases, an infinite number of entropy functionals together with the associated entropy productions is derived. Our technique can be extended to higher-order entropies, containing derivatives of the solution, and to several space dimensions. Furthermore, logarithmic Sobolev inequalities can …

Partial differential equationDiffusion equationApplied MathematicsMathematical analysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsStrong Subadditivity of Quantum EntropySobolev inequalityBinary entropy functionNonlinear systemEntropy (energy dispersal)Mathematical PhysicsJoint quantum entropyMathematicsNonlinearity
researchProduct

Convergence in discrete Cauchy problems and applications to circle patterns

2005

A lattice-discretization of analytic Cauchy problems in two dimensions is presented. It is proven that the discrete solutions converge to a smooth solution of the original problem as the mesh size ε \varepsilon tends to zero. The convergence is in C ∞ C^\infty and the approximation error for arbitrary derivatives is quadratic in ε \varepsilon . In application, C ∞ C^\infty -approximation of conformal maps by Schramm’s orthogonal circle patterns and lattices of cross-ratio minus one is shown.

Cauchy problemCauchy's convergence testConvergence (routing)MathematicsofComputing_GENERALApplied mathematicsCauchy distributionGeometry and TopologyModes of convergenceMathematicsCauchy productConformal Geometry and Dynamics of the American Mathematical Society
researchProduct