0000000000393737
AUTHOR
Rongfeng Sun
Genealogies of Interacting Particle Systems
One-dimensional random walks with self-blocking immigration
We consider a system of independent one-dimensional random walkers where new particles are added at the origin at fixed rate whenever there is no older particle present at the origin. A Poisson ansatz leads to a semi-linear lattice heat equation and predicts that starting from the empty configuration the total number of particles grows as $c \sqrt{t} \log t$. We confirm this prediction and also describe the asymptotic macroscopic profile of the particle configuration.
Disorder relevance for the random walk pinning model in dimension 3
We study the continuous time version of the random walk pinning model, where conditioned on a continuous time random walk Y on Z^d with jump rate \rho>0, which plays the role of disorder, the law up to time t of a second independent random walk X with jump rate 1 is Gibbs transformed with weight e^{\beta L_t(X,Y)}, where L_t(X,Y) is the collision local time between X and Y up to time t. As the inverse temperature \beta varies, the model undergoes a localization-delocalization transition at some critical \beta_c>=0. A natural question is whether or not there is disorder relevance, namely whether or not \beta_c differs from the critical point \beta_c^{ann} for the annealed model. In Birkner a…