0000000000393847
AUTHOR
W.-j. Ong
Low-lying level structure of Cu56 and its implications for the rp process
The low-lying energy levels of proton-rich Cu56 have been extracted using in-beam γ-ray spectroscopy with the state-of-the-art γ-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in Cu56 serve as resonances in the Ni55(p,γ)Cu56 reaction, which is a part of the rp process in type-I x-ray bursts. To resolve existing ambiguities in the reaction Q value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in Q=639±82 keV. We derive the first experimentally constrained thermonuclear reaction rate for Ni55(p,γ)Cu56. We find that, with this new rate, the …
Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning
Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…