0000000000393911

AUTHOR

Nelson F. Martínez

Isobaric vapour–liquid equilibria for the binary systems 4-methyl-2-pentanone+1-butanol and+2-butanol at 20 and 101.3kPa

Abstract Isobaric vapour–liquid equilibrium (VLE) measurements for the binary systems 4-methyl-2-pentanone + 1-butanol and 4-methyl-2-pentanone + 2-butanol are reported at 20 and 101.3 kPa. The system 4-methyl-2-pentanone + 1-butanol presents a minimum boiling point azeotrope at both pressures (20 and 101.3 kPa) and the system 4-methyl-2-pentanone + 2-butanol presents only a minimum boiling azeotrope at 20 kPa. In both systems, which deviate positively from ideal behaviour, the azeotropic composition is strongly dependent on pressure. The activity coefficients and boiling points of the solutions were correlated with its composition by the Wilson, UNIQUAC, and NRTL models for which the param…

research product

Isobaric vapour–liquid equilibria for binary systems of 2-butanone with ethanol, 1-propanol, and 2-propanol at 20 and 101.3kPa

Abstract Consistent isobaric vapour–liquid equilibrium data have been measured for 2-butanone + ethanol, 2-butanone + 1-propanol, and 2-butanone + 2-propanol at 20 and 101.3 kPa. The binary systems 2-butanone + ethanol and 2-butanone + 2-propanol present a minimum boiling azeotrope at both pressures, and show that the azeotropic compositions is strongly dependent on pressure. The equilibrium data were correlated using the Wilson, NRTL, and UNIQUAC models for which the parameters are reported.

research product

Isobaric Vapor−Liquid Equilibria for Binary and Ternary Mixtures of Ethanol and 2-Propanol with 2-Butanone and Butyl Propionate at 101.3 kPa

This paper presents vapor−liquid equilibrium (VLE) data at 101.3 kPa for the ternary systems ethanol + 2-butanone + butyl propionate and 2-propanol + 2-butanone + butyl propionate and some of their...

research product

Measurements and correlation of vapour–liquid equilibria of 2-butanone and hydrocarbons binary systems at two different pressures

Abstract Consistent isobaric vapour–liquid equilibrium data have been measured for 2-butanone + n-hexane, 2-butanone + n-heptane, and 2-butanone + 2,2,4-trimethylpentane at two different pressures. All binary systems present a minimum boiling azeotrope at both pressures, and show that the azeotropic compositions are weakly dependent on pressure. The equilibrium data were correlated using the Wilson, NRTL, and UNIQUAC models for which the parameters are reported.

research product