0000000000394064

AUTHOR

Robert Fürst

Back Cover: Promoter Activation in Δ hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing (Angew. Chem. Int. Ed. 52/2019)

research product

Rücktitelbild: Promoter Activation in Δ hfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing (Angew. Chem. 52/2019)

research product

Best practice in research – Overcoming common challenges in phytopharmacological research

Abstract Background The pharmacology, toxicology and pharmacokinetics of bioactive preparations derived from natural sources has become a flourishing field of research. However, researching complex extracts and natural products faces numerous challenges. More broadly in recent years the critique of pharmacological research, and specifically its design, the methods used and reporting has intensified. Aims This consensus document provides a perspective on what constitutes best practice in pharmacological research on bioactive preparations derived from natural sources, providing a perspective of what the leading specialist journals in the field consider as the core characteristics of good rese…

research product

Promoter Activation in Dhfq Mutants as an Efficient Tool for Specialized Metabolite Production Enabling Direct Bioactivity Testing

Abstract Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene‐sequence‐similarity‐based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseud…

research product

In vitro evaluation of a biomaterial-based anticancer drug delivery system as an alternative to conventional post-surgery bone cancer treatment

Patients diagnosed with osteosarcoma are currently treated with intravenous injections of anticancer agents after tumor resection. However, due to remaining neoplastic cells at the site of tumor removal, cancer recurrence often occurs. Successful bone regeneration combined with the control of residual cancer cells presents a challenge for tissue engineering. Cyclodextrins loaded with chemotherapeutic drugs reversibly release the drugs over time. Hydroxyapatite bone biomaterials coated with doxorubicin-loaded cyclodextrin should release the drug with time after implantation directly at the original tumor site and may be a way to eliminate residual neoplastic cells. In the present study, we h…

research product