0000000000394297

AUTHOR

Burkhard Knopf

Progress on bringing together raptor collections in Europe for contaminant research and monitoring in relation to chemicals regulation.

Paola Movalli et al.

research product

Biomethylation of Heavy Metals in Soil and Terrestrial Invertebrates

Heavy metals play a prominent role in the lives of all organisms. They can be essential, as in the cases of iron, manganese, nickel and copper, which are needed to obtain proper enzyme conformation and reactivity. Some heavy metals are toxic to organisms, such as mercury or cadmium. Often, these metals are rarely accessible in their inorganic form. After biological transformation into organometallic compounds, they exhibit increased toxicity and penetration into animal tissue is facilitated. The alkylation mechanisms of metals (especially mercury) performed by aquatic microorganisms have been well documented. The organometallic food chain from fish to humans has also been investigated. Howe…

research product

Properties of Halococcus salifodinae, an Isolate from Permian Rock Salt Deposits, Compared with Halococci from Surface Waters

Halococcus salifodinae BIpT DSM 8989T, an extremely halophilic archaeal isolate from an Austrian salt deposit (Bad Ischl), whose origin was dated to the Permian period, was described in 1994. Subsequently, several strains of the species have been isolated, some from similar but geographically separated salt deposits. Hcc. salifodinae may be regarded as one of the most ancient culturable species which existed already about 250 million years ago. Since its habitat probably did not change during this long period, its properties were presumably not subjected to the needs of mutational adaptation. Hcc. salifodinae and other isolates from ancient deposits would be suitable candidates for testing …

research product

Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-living Eisenia foetida

Abstract Monomethylmercury as one of the most toxic mercury species influences the health and development of higher organisms and tends to accumulate in the tissue of animals and humans. The aim of this study was to explore the mercury methylating capability of (1) intestinal microbiota of the soil-living earthworm Eisenia foetida (E. foetida) and (2) intestinal sulfate reducing-bacteria in pure cultures. After exposing animals to inorganic mercury chloride (4 mg kg−1 Hg2+) in soil and sterile soil for ten days, the amount of methylmercury in tissue was measured. Despite sterilization of soil, the accumulation of the organic mercury species in tissue was 51 ng g−1. To elucidate the potentia…

research product