0000000000394619

AUTHOR

Allen West

Nanodiamond-Rich Layer across Three Continents Consistent with Major Cosmic Impact at 12,800 Cal BP

© 2014 by The University of Chicago. All rights reserved. A major cosmic-impact event has been proposed at the onset of the Younger Dryas (YD) cooling episode at ≈12,800 ± 150 years before present, forming the YD Boundary (YDB) layer, distributed over 150 million km2 on four continents. In 24 dated stratigraphic sections in 10 countries of the Northern Hemisphere, the YDB layer contains a clearly defined abundance peak in nanodiamonds (NDs), a major cosmic-impact proxy. Observed ND polytypes include cubic diamonds, lonsdaleite-like crystals, and diamond-like carbon nanoparticles, called n-diamond and i-carbon. The ND abundances in bulk YDB sediments ranged up to ≈500 ppb (mean: 200 ppb) and…

research product

Reply to Holliday and Boslough et al.: Synchroneity of widespread Bayesian-modeled ages supports Younger Dryas impact hypothesis

Holliday (1) rejects age-depth models for the Younger Dryas boundary layer (YDB) in Kennett et al. (2), claiming that they are incorrect for several reasons, including age reversals, high age uncertainties, and use of optically stimulated luminescence (OSL) dating. These same claims previously were presented in Meltzer et al. (3) and were discussed and refuted in Kennett et al. (2). These criticisms apply to nearly all dated archaeological and geological sequences, including the Odessa meteorite impact crater, where paradoxically, Holliday et al. (4) modeled an impact age using OSL dating (>70% of dates used) with large uncertainties (to >6,000 y) and age reversals (>40% of dates are revers…

research product

Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal BP for Younger Dryas boundary on four continents

The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet …

research product