0000000000394735

AUTHOR

Susana Serna

showing 11 related works from this author

Anomalous dynamics triggered by a non-convex equation of state in relativistic flows

2017

The non-monotonicity of the local speed of sound in dense matter at baryon number densities much higher than the nuclear saturation density ($n_0 \approx 0.16\,$fm$^{-3}$) suggests the possible existence of a non-convex thermodynamics which will lead to a non-convex dynamics. Here, we explore the rich and complex dynamics that an equation of state (EoS) with non-convex regions in the pressure-density plane may develop as a result of genuinely relativistic effects, without a classical counterpart. To this end, we have introduced a phenomenological EoS, whose parameters can be restricted heeding to causality and thermodynamic stability constraints. This EoS shall be regarded as a toy-model wi…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsEquation of state (cosmology)Plane (geometry)Nuclear TheoryFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesAstronomy and AstrophysicsPhysics - Fluid DynamicsApprox01 natural sciencesCausality (physics)Complex dynamicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSpeed of sound0103 physical sciencesBaryon numberAstrophysics - High Energy Astrophysical PhenomenaRelativistic quantum chemistry010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Mathematical physics
researchProduct

Synthesis of Monodisperse Spherical Nanocrystals

2016

Nanoparticles, small units of matter with dimensions in the range 1-100 nm, exhibit many advantageous size-dependent magnetic, electrical, chemical and optical prop- erties, which are not observed at the microscale or bulk. These properties are extremely sensitive to particle size, and thus the ability to produce monodisperse particles is critical. Due to its ease of use and flexibility, precipitation of nanoparticles from solution is one of the most widely used synthesis methods. The main disadvantage of this method is that the relationship between particle growth and system conditions is not fully understood. In practice, the optimal reaction conditions are usually ascertained empirically…

evolution of the nanoparticle size distributionOstwald ripeningFlexibility (engineering)Materials sciencenanoparticle growthPrecipitation (chemistry)Dispersitysize focussing and defocussingNanoparticleCrystal growthparticle sizemonodisperse particlessymbols.namesakeNanocrystalChemical physicssymbolsNanoparticlesParticle size
researchProduct

Power ENO methods: a fifth-order accurate Weighted Power ENO method

2004

In this paper we introduce a new class of ENO reconstruction procedures, the Power ENO methods, to design high-order accurate shock capturing methods for hyperbolic conservation laws, based on an extended class of limiters, improving the behavior near discontinuities with respect to the classical ENO methods. Power ENO methods are defined as a correction of classical ENO methods [J. Comput. Phys. 71 (1987) 231], by applying the new limiters on second-order differences or higher. The new class of limiters includes as a particular case the minmod limiter and the harmonic limiter used for the design of the PHM methods [see SIAM J. Sci. Comput. 15 (1994) 892]. The main features of these new ENO…

Numerical AnalysisConservation lawPhysics and Astronomy (miscellaneous)Applied MathematicsMathematical analysisScalar (physics)Harmonic (mathematics)Computer Science ApplicationsEuler equationsMaxima and minimaComputational Mathematicssymbols.namesakeDiscontinuity (linguistics)Riemann problemModeling and SimulationShock capturing methodsymbolsMathematicsJournal of Computational Physics
researchProduct

Neutron star collapse and gravitational waves with a non-convex equation of state

2018

The thermodynamical properties of the equation of state (EoS) of high-density matter (above nuclear saturation density) and the possible existence of exotic states such as phase transitions from nuclear/hadronic matter into quark-gluon plasma, or the appearance of hyperons, may critically influence the stability and dynamics of compact relativistic stars. From a theoretical point of view, establishing the existence of those states requires the analysis of the `convexity' of the EoS. We show indications of the existence of regions in the dense-matter EoS where the thermodynamics may be non-convex as a result of a non-monotonic dependence of the sound speed with the rest-mass density. When th…

Phase transitionEquation of stateAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationTheoretical physics0103 physical sciencesNuclear Experiment010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsBlack holeNeutron starStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceQuark–gluon plasmaAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct

Capturing blast waves in granular flow

2007

Abstract In this paper we continue the analysis of compressible Euler equations for inelastic granular gases described by a granular equation of state due to Goldshtein and Shapiro [Goldshtein A, Shapiro M. Mechanics of collisional motion of granular materials. Part 1: General hydrodynamic equations. J Fluid Mech 1995;282:75–114], and an energy loss term accounting for inelastic collisions. We study the hydrodynamics of blast waves in granular gases by means of a fifth-order accurate scheme that resolves the evolution under different restitution coefficients. We have observed and analyzed the formation of a cluster region near the contact wave using the one-dimensional and two-dimensional v…

Shock wavePhysicsEquation of stateGeneral Computer ScienceGeneral EngineeringInelastic collisionMechanicsGranular materialEuler equationssymbols.namesakeClassical mechanicsCompressibilitysymbolsFluidizationBlast waveComputers & Fluids
researchProduct

Anomalous wave structure in magnetized materials described by non-convex equations of state

2014

Agraïments: Institute for Pure and Applied Mathematics (UCLA) 2012 program on "Computational Methods in High Energy Density Plasmas. We analyze the anomalous wave structure appearing in flow dynamics under the influence of magnetic field in materials described by non-ideal equations of state. We consider the system of magnetohydrodynamics equations closed by a general equation of state (EOS) and propose a complete spectral decomposition of the fluxes that allows us to derive an expression of the nonlinearity factor as the mathematical tool to determine the nature of the wave phenomena. We prove that the possible formation of non-classical wave structure is determined by both the thermodynam…

Fluid Flow and Transfer ProcessesPhysicsPhase transitionMechanical EngineeringNumerical analysisNon-convex equation of stateComputational MechanicsCondensed Matter PhysicsComposite wavesMagnetic fieldsymbols.namesakeNonlinear systemMagnetohydrodynamicsClassical mechanicsRiemann problemFlow (mathematics)Mechanics of MaterialsPhase transitionssymbolsMagnetohydrodynamicsComplex wave structureMaterial properties
researchProduct

High order accurate shock capturing schemes for two-component Richtmyer-Meshkov instabilities in compressible magnetohydrodynamics

2011

We design a conservative and entropy satisfying numerical scheme to perform numerical simulations of two component Richtmyer-Meshkov (RM) instabilities in compressible magnetohydrodynamics (MHD). We first formulate a conservative model of a two-component compressible MHD fluid ruled under two ideal gases with different adiabatic exponents. The formulation includes a level set function that allows to evolve the two components of the plasma in a conservative and consistent way. We present a set of examples including two-component Riemann problems and high Mach shock wave interactions with entropy contact waves that validate the high order accurate numerical scheme. We observe that turbulent r…

Shock wavePhysicssymbols.namesakeClassical mechanicsMach numberTurbulencesymbolsCompressibilityPlasmaMechanicsMagnetohydrodynamicsAdiabatic processIdeal gas
researchProduct

Shock-capturing schemes: high accuracy versus total-variation boundedness

2007

In this reseach work we analyze the total variation growth of some high order accurate reconstruction procedures used for the design of shock capturing schemes. This study allows to measure how oscillatory a high order accurate method is in terms of the basic elementary function chosen to increase the order of accuracy. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Work (thermodynamics)CalculusElementary functionOrder of accuracyApplied mathematicsVariation (game tree)High orderMeasure (mathematics)Shock (mechanics)MathematicsPAMM
researchProduct

Afternotes on PHM: Harmonic ENO Methods

2003

PHM methods have been used successfully as reconstruction procedures to design high-order Riemann solvers for nonlinear scalar and systems of conservation laws, (see [8], [1], [4]). We introduce a new class of polynomial reconstruction procedures based on the harmonic mean of the absolute values of finite diferences used as difference-limiter, following the original idea used before to design the piecewise hyperbolic method, introduced in [8]. We call those methods ’harmonic ENO methods’, (HENO). Furthermore, we give analytical and numerical evidence of the good behavior of these methods used as reconstruction procedures for the numerical approximation by means of shock-capturing methods fo…

Riemann hypothesissymbols.namesakeNonlinear systemConservation lawFourth orderHarmonic meanScalar (mathematics)symbolsPiecewiseApplied mathematicsReconstruction procedureMathematics
researchProduct

Fronts propagating with signal dependent speed in limited diffusion and related Hamilton-Jacobi formulations

2021

We consider a class of limited diffusion equations and explore the formation of diffusion fronts as the result of a combination of diffusive and hyperbolic transport. We analyze a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion coefficient that depends on the unknown and on the gradient of the unknown. We explore the main features of the solution of the Hamilton-Jacobi equations that contain shocks and propose a suitable numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We analyze three model problems covering d…

ConvectionNumerical AnalysisDarcy's lawNumerical approximationApplied MathematicsMathematical analysisFunction (mathematics)Hamilton–Jacobi equationComputational MathematicsLimited diffusion equationsPiecewiseHeat equationDiffusion (business)Constant (mathematics)Hamilton-Jacobi equationsViscosity solutions with shocksMathematics
researchProduct

Capturing shock waves in inelastic granular gases

2005

Shock waves in granular gases generated by hitting an obstacle at rest are treated by means of a shock capturing scheme that approximates the Euler equations of granular gas dynamics with an equation of state (EOS), introduced by Goldshtein and Shapiro [J. Fluid Mech. 282 (1995) 75-114], that takes into account the inelastic collisions of granules. We include a sink term in the energy balance to account for dissipation of the granular motion by collisional inelasticity, proposed by Haff [J. Fluid Mech. 134 (1983) 401-430], and the gravity field added as source terms. We have computed the approximate solution to a one-dimensional granular gas falling on a plate under the acceleration of grav…

Shock wavePhysicsNumerical AnalysisEquation of statePhysics and Astronomy (miscellaneous)Applied MathematicsInelastic collisionEnergy balanceGas dynamicsDissipationComputer Science ApplicationsEuler equationsComputational Mathematicssymbols.namesakeClassical mechanicsGravitational fieldModeling and SimulationsymbolsJournal of Computational Physics
researchProduct