0000000000395187
AUTHOR
Jan Henneberger
HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager
In situ observations of cloud properties in complex alpine terrain where research aircraft cannot sample are commonly conducted at mountain-top research stations and limited to single-point measurements. The HoloGondel platform overcomes this limitation by using a cable car to obtain vertical profiles of the microphysical and meteorological cloud parameters. The main component of the HoloGondel platform is the HOLographic Imager for Microscopic Objects (HOLIMO 3G), which uses digital in-line holography to image cloud particles. Based on two-dimensional images the microphysical cloud parameters for the size range from small cloud particles to large precipitation particles are obtained for th…
Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations
In situ cloud observations at mountain-top research stations regularly measure ice crystal number concentrations (ICNCs) orders of magnitudes higher than expected from measurements of ice nucleating particle (INP) concentrations. Thus, several studies suggest that mountain-top in situ cloud microphysical measurements are influenced by surface processes, e.g., blowing snow, hoar frost or riming on snow-covered trees, rocks and the snow surface. This limits the relevance of such measurements for the study of microphysical properties and processes in free-floating clouds. This study assesses the impact of surface processes on in situ cloud observations at the Sonnblick Observatory in the Hohen…
Persistence of orographic mixed‐phase clouds
Mixed-phase clouds (MPCs) consist of ice crystals and supercooled water droplets at temperatures between 0 and approximately −38°C. They are thermodynamically unstable because the saturation vapor pressure over ice is lower than that over supercooled liquid water. Nevertheless, long-lived MPCs are ubiquitous in the Arctic. Here we show that persistent MPCs are also frequently found in orographic terrain, especially in the Swiss Alps, when the updraft velocities are high enough to exceed saturation with respect to liquid water allowing simultaneous growth of supercooled liquid droplets and ice crystals. Their existence is characterized by holographic measurements of cloud particles obtained …
HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds
Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a system…
HoloGondel: in-situ cloud observations on a cable car in the Swiss Alps using a holographic imager
Abstract. In-situ observations of cloud properties in complex alpine terrain where research aircraft cannot sample are commonly conducted at mountain-top research stations and limited to single-point measurements. The HoloGondel platform overcomes this limitation by using a cable car to obtain vertical profiles of the microphysical and meteorological cloud parameters. The main component of the HoloGondel platform is the HOLographic Imager for Microscopic Objects (HOLIMO 3G), which uses digital 5 in-line holography to image cloud particles. Based on a two dimensional shadow-graph the phase resolved microphysical cloud parameters for the size range from small cloud particles to large precipit…