0000000000395204
AUTHOR
Astrid N. Hiller Blin
Towards a combined analysis of inclusive/exclusive electroproduction
In view of the major advances achieved by the CLAS experiments in studying the N* electroexcitation amplitudes, as well as further extension of these studies in the experiments with CLAS12, we present an approach for the evaluation of the resonant contributions to inclusive electron scattering off protons. For the first time, the resonant contributions are determined from the experimental results on N* electrocouplings available from the data analyses of exclusive meson electroproduction off protons. This is a useful benchmark for future endeavours on understanding the transition region between low and high-energy regions, strongly related to tests on quark-hadron duality.
Exploring hyperon structure with electromagnetic transverse densities
We explore the structure of the spin-1/2 flavor-octet baryons (hyperons) through their electromagnetic transverse densities. The transverse densities describe the distribution of charge and magnetization at fixed light-front time and enable a spatial representation of the baryons as relativistic systems. At peripheral distances b~1/M_pi the transverse densities are computed using a new method that combines chiral effective field theory and dispersion analysis. The peripheral isovector densities arise from two-pion exchange, which includes the rho-meson resonance through elastic unitarity. The isoscalar densities are estimated from vector meson exchange (omega, phi). We find that the "pion c…
Weak pion production off the nucleon in covariant chiral perturbation theory
Weak pion production off the nucleon at low energies has been systematically investigated in manifestly relativistic baryon chiral perturbation theory with explicit inclusion of the $\Delta$(1232) resonance. Most of the involved low-energy constants have been previously determined in other processes such as pion-nucleon elastic scattering and electromagnetic pion production off the nucleon. For numerical estimates, the few remaining constants are set to be of natural size. As a result, the total cross sections for single pion production on neutrons and protons, induced either by neutrino or antineutrino, are predicted. Our results are consistent with the scarce existing experimental data ex…
Electromagnetic form factors of spin 1/2 doubly charmed baryons
We study the electromagnetic form factors of the doubly charmed baryons, using covariant chiral perturbation theory within the extended on-mass-shell (EOMS) scheme. Vector-meson contributions are also taken into account. We present results for the baryon magnetic moments, charge and magnetic radii. While some of the chiral Lagrangian parameters could be set to values determined in previous works, the available lattice results for $\Xi_{cc}^+$ and $\Omega_{cc}^+$ only allow for robust constraints on the low-energy constant (LEC) combination, $c_{89}(=-\frac{1}{3}c_8+4c_9)$. The couplings of the doubly charmed baryons to the vector mesons have been estimated assuming the Okubo--Zweig--Iizuka …
Pion photoproduction off nucleons in covariant chiral perturbation theory
Pion photoproduction off the nucleon close to threshold is studied in covariant baryon chiral perturbation theory at O($p^3$) in the extended-on-mass-shell scheme, with the explicit inclusion of the $\Delta(1232)$ resonance using the $\delta$ counting. The theory is compared to the available data of cross sections and polarization observables for all the charge channels. Most of the necessary low energy constants are well known from the analysis of other processes and the comparison with data strongly constrains some of the still unknown ones. The $\Delta(1232)$ contribution is significant in improving the agreement with data, even at the low energies considered.
Rare CP-violated η and η′ meson decays and neutron EDM.
The data for the upper limit on the electric dipole moment of the neutron (nEDM) can be explained by using different mechanisms beyond the Standard Model (SM). The nEDM can be generated by a CP-violating transition of η and η′ mesons into pion pairs. We derive the upper limits for the rates of the CP-violating decays η(η′) → 2π are by orders of magnitude more stringent than those from existing experiments so far.
Bounds on rare decays of η and η′ mesons from the neutron EDM
We provide model-independent bounds on the rates of rare decays $\ensuremath{\eta}({\ensuremath{\eta}}^{\ensuremath{'}})\ensuremath{\rightarrow}\ensuremath{\pi}\ensuremath{\pi}$ based on experimental limits on the neutron electric dipole moment (nEDM). Starting from phenomenological $\ensuremath{\eta}({\ensuremath{\eta}}^{\ensuremath{'}})\ensuremath{\pi}\ensuremath{\pi}$ couplings, the nEDM arises at the two-loop level. The leading-order relativistic chiral perturbation theory calculation with the minimal photon coupling to charged pions and a proton inside the loops leads to a finite, counterterm-free result. This is an improvement upon previous estimates which used approximations in evalu…