0000000000395700

AUTHOR

Henrik Knecht

Differential Effects of Antibiotic Therapy on the Structure and Function of Human Gut Microbiota

The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB), are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the…

research product

Functional consequences of microbial shifts in the human gastrointestinal tract linked to antibiotic treatment and obesity

The microbiomes in the gastrointestinal tract (GIT) of individuals receiving antibiotics and those in obese subjects undergo compositional shifts, the metabolic effects and linkages of which are not clearly understood. Herein, we set to gain insight into these effects, particularly with regard to carbohydrate metabolism, and to contribute to unravel the underlying mechanisms and consequences for health conditions. We measured the activity level of GIT carbohydrate-active enzymes toward 23 distinct sugars in adults patients (n = 2) receiving 14-d β-lactam therapy and in obese (n = 7) and lean (n = 5) adolescents. We observed that both 14 d antibiotic-treated and obese subjects showed higher …

research product

Gut microbiota disturbance during antibiotic therapy: a multi-omic approach

It is known that the gastrointestinal tract (GIT) microbiota responds to different antibiotics in different ways and that while some antibiotics do not induce disturbances of the community, others drastically influence the richness, diversity, and prevalence of bacterial taxa. However, the metabolic consequences thereof, independent of the degree of the community shifts, are not clearly understood. In a recent article, we used an integrative OMICS approach to provide new insights into the metabolic shifts caused by antibiotic disturbance. The study presented here further suggests that specific bacterial lineage blooms occurring at defined stages of antibiotic intervention are mostly associa…

research product