0000000000396554

AUTHOR

J. Schenda

Abstract of the 68th Meeting (Spring Meeting) 6–9 March 1990, Heidelberg

research product

An intrinsic neuronal-like network in the rat pineal gland

Recent studies have shown that in rat pineal glands kept in vitro action potential-producing cell clusters are demonstrable. To test whether the clusters interact, multiple-unit recordings were carried out simultaneously from different clusters, with or without electrical stimulation. Clusters with rhythmic burst activity exhibit highly synchronized firing and electrical stimulation of one cluster elicits an immediate response in another one, apparently involving synapses but not gap junctions. It is hypothesized that the interacting clusters form a network. As the firing is affected by norepinephrine, acetylcholine and Ca2+, the network may monitor the interstitial concentrations of these …

research product

Demonstration of action-potential-producing cells in the rat pineal gland in vitro and their regulation by norepinephrine and nitric oxide

There is evidence that sympathetically innervated mammalian pineal glands contain cells that exhibit action potentials. It is unknown whether ex vivo pineal glands deprived of their nervous input are still capable of firing. In the present study, multiple-unit recordings from rat pineals revealed spontaneously active cell clusters with a mean firing frequency of 1.5 +/- 0.3 Hz which could be abolished by tedrodotoxin. Regularly firing clusters showed no inherent periodicity in the minute range, whereas rhythmical clusters with periodically repeated bursts had period lengths of 12.6 min (day) and 9.5 min (night). Superfusion of norepinephrine reduced the firing frequency of both cluster type…

research product

Nitric oxide inhibits electrically active units in the rat pineal gland.

Extracellular multiple unit recordings were performed in isolated rat pineal glands to determine a possible effect of nitric oxide (NO) on the spontaneous electrical activity of pinealocytes. Spontaneously active cells forming clusters of 3-5 cells fell into two categories: more or less regularly firing clusters (REG, 64%) and irregularly discharging clusters with periodically repeated bursts (RHY, 36%). The NO-donor sodium nitroprusside (SNP) reduced the discharge rate of the great majority of REG clusters and of all the RHY clusters examined. Moreover, the burst activity of RHY clusters was abolished. These results could be completely reproduced by using another NO-donor, S-nitroso-N-acet…

research product