0000000000397236
AUTHOR
M. Kulmala
The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences
This paper describes the background, instrumentation, goals, and the regional influences on the HUMPPACOPEC intensive field measurement campaign, conducted at the Boreal forest research station SMEAR II (Station for Measuring Ecosystem-Atmosphere Relation) in Hyyti¨al¨a, Finland from 12 July–12 August 2010. The prevailing meteorological conditions during the campaign are examined and contrasted with those of the past six years. Back trajectory analyses show that meteorological conditions at the site in 2010 were characterized by a higher proportion of southerly flow than in the other years studied. As a result the summer of 2010 was anomalously warm and high in ozone making the campaign rel…
Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study
The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid …
Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010
Ambient total OH reactivity was measured at the Finnish boreal forest station SMEAR II in Hyytiälä (Latitude 61&deg;51' N; Longitude 24&deg;17' E) in July and August 2010 using the Comparative Reactivity Method (CRM). The CRM – total OH reactivity method – is a direct, in-situ determination of the total loss rate of hydroxyl radicals (OH) caused by all reactive species in air. During the intensive field campaign HUMPPA-COPEC 2010 (<b>H</b>yytiälä <b>U</b>nited <b>M</b>easurements of <b>P</b>hotochemistry and <b>P</b>articles in <b>A</b>ir – <b>C</b>omprehensive <b>O</b>rganic <b>P&l…
Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air
In the aqueous phase, fine particulate matter can form reactive species (RS) that influence the aging, properties, and health effects of atmospheric aerosols. In this study, we explore the RS yields of aerosol samples from a remote forest (Hyytiälä, Finland) and polluted urban locations (Mainz, Germany; Beijing, China), and we relate the RS yields to different chemical constituents and reaction mechanisms. Ultra-high-resolution mass spectrometry was used to characterize organic aerosol composition, electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique was applied to determine the concentrations of ⚫OH, O2⚫-, and carbon- or oxygen-centered organic radicals, and a …
The driving factors of new particle formation and growth in the polluted boundary layer
Publisher Copyright: © 2021 Mao Xiao et al. New particle formation (NPF) is a significant source of atmospheric particles, affecting climate and air quality. Understanding the mechanisms involved in urban aerosols is important to develop effective mitigation strategies. However, NPF rates reported in the polluted boundary layer span more than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have been postulated to participate in NPF, including sulfuric acid, ammonia, amines and organics, but their relative roles remain unclear. We investigated NPF in the CLOUD chamber using mixtures of anthropogenic vap…