Adiabatic evolution and shape resonances
Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrödinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter ε \varepsilon with ln ε ≍ − 1 / h \ln \varepsilon \asymp -1/h , where h h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length ε − N \varepsilon ^{-N} with an error O ( ε N ) {\mathcal O}(\varepsilon ^N) . Here N > 0 N>0 is arbitrary. \center Résumé \endcenter Motivés par un pro…