0000000000398215
AUTHOR
Somnath De
Equation of state of strongly interacting matter: spectra for thermal particles and intensity correlation of thermal photons
We find that an equation of state for hot hadronic matter consisting of all baryons having $M < 2$ GeV and all mesons having $M < 1.5$ GeV, along with Hagedorn resonances in thermal and chemical equilibrium, matches rather smoothly with lattice equation of state (p4 action, ${N_��}=8$) for T up to $\approx 200$ MeV, when corrected for the finite volume of hadrons. Next we construct two equations of state for strongly interacting matter; one, HHL, in which the above is matched to the lattice equation of state at $T=165$ MeV and the other, HHB, where we match it to a bag model equation of state with critical temperature $T_c=165$ MeV. We compare particle spectra, thermal photon spectra …
PREDICTIONS FOR p+PbCOLLISIONS AT $\sqrt{s_{_{\it NN}}} = 5$
Predictions for charged hadron, identified light hadron, quarkonium, photon, jet and gauge bosons in p+Pb collisions at $\sqrt{s_{_{\it NN}}} = 5\, {\rm TeV}$ are compiled and compared. When test run data are available, they are compared to the model predictions.
Equation of state of strongly interacting matter and intensity interferometry of thermal photons
Abstract We find that an equation of state (EOS) for hot hadronic matter consisting of all mesons (baryons) having M 1.5 ( 2.0 ) GeV along with Hagedorn resonances in thermal and chemical equilibrium, matches rather smoothly with lattice EOS ( p 4 action, N τ = 8 ) for T up to ≈200 MeV, when corrections are made for the finite volume of hadrons. Two equations of state, HHL and HHB are constructed where the above is matched to the lattice and bag model EoS respectively at a critical temperature T c = 165 MeV . We find that the particle and thermal photon spectra differ only marginally for the two equations of state at both RHIC and LHC energies. The intensity interferometry results, speciall…