0000000000398742
AUTHOR
Anna Dabizha
Predicting breakthrough of vanadium in fixed-bed absorbent columns with complex groundwater chemistries: A multi-component granular ferric hydroxide−vanadate−arsenate−phosphate−silicic acid system
Granular ferric hydroxide (GFH) is often used for fixed bed adsorbent (FBA) columns in groundwater purification units around the world to remove arsenate contaminations. Groundwater can contain also other toxic (e.g., antimonite and vanadate) and non-toxic oxo-anions (phosphate and silicic acid) that are known to affect FBA lifetimes. Therefore, understanding the breakthrough of toxic compounds intended for removal by FBA is essential to their design, and is important to predict accurately breakthrough curves (BTCs) for FBAs in waterworks to plan future operating costs. Rapid small-scale column tests (RSCCT) and pilot-scale FBA were used to simulate vanadate BTCs for complex groundwater che…
Exothermic adsorption of chromate by goethite
Abstract Goethite is a common Fe oxyhydroxide coating soil particle surfaces, which has a high Cr(VI) adsorption capacity under acidic pH conditions. Batch equilibrium adsorption experiments with chromate concentrations of 0.1, 0.2, and 0.3 mM were performed using solutions with ionic strengths of 0.1, 0.05, and 0.01 M and pH values of 3–11 and at four temperatures between 10 and 75 °C. The results of these experiments show that the amount of chromate adsorbed decreases as the pH increases towards the zero-point-of-surface-charge of goethite (pHPZC 9.1), which is typical for anions. The chromate adsorption efficiency also depends on the ionic strength of the solution. The amount of chromate…
LFER and the Effect of Temperature on Oxyanion Adsorption by Goethite
A linear relationship between the Gibbs free energy, ΔGr,H+, of the aqueous complex deprotonation reaction, and the Gibbs free energy, ΔGr,ads, of bidentate surface complexation reaction of oxyanions was derived from modelling of temperature dependent batch equilibrium adsorption experiments. As exemplified in this study, this relationship may be exploited to predict temperature-dependent adsorption behavior of oxyanions not yet known such as pertechnetate.