Large systems of path-repellent Brownian motions in a trap at positive temperature
We study a model of $ N $ mutually repellent Brownian motions under confinement to stay in some bounded region of space. Our model is defined in terms of a transformed path measure under a trap Hamiltonian, which prevents the motions from escaping to infinity, and a pair-interaction Hamiltonian, which imposes a repellency of the $N$ paths. In fact, this interaction is an $N$-dependent regularisation of the Brownian intersection local times, an object which is of independent interest in the theory of stochastic processes. The time horizon (interpreted as the inverse temperature) is kept fixed. We analyse the model for diverging number of Brownian motions in terms of a large deviation princip…
Effect of a Locally Repulsive Interaction on s-wave Superconductors
The thermodynamic impact of the Coulomb repulsion on s-wave superconductors is analyzed via a rigorous study of equilibrium and ground states of the strong coupling BCS-Hubbard Hamiltonian. We show that the one-site electron repulsion can favor superconductivity at fixed chemical potential by increasing the critical temperature and/or the Cooper pair condensate density. If the one-site repulsion is not too large, a first or a second order superconducting phase transition can appear at low temperatures. The Meißner effect is shown to be rather generic but coexistence of superconducting and ferromagnetic phases is also shown to be feasible, for instance, near half-filling and at strong repul…
Macroscopic conductivity of free fermions in disordered media
We conclude our analysis of the linear response of charge transport in lattice systems of free fermions subjected to a random potential by deriving general mathematical properties of its conductivity at the macroscopic scale. The present paper belongs to a succession of studies on Ohm and Joule's laws from a thermodynamic viewpoint. We show, in particular, the existence and finiteness of the conductivity measure $\mu _{\mathbf{\Sigma }}$ for macroscopic scales. Then we prove that, similar to the conductivity measure associated to Drude's model, $\mu _{\mathbf{\Sigma }}$ converges in the weak$^{\ast } $-topology to the trivial measure in the case of perfect insulators (strong disorder, compl…
Non-cooperative Equilibria of Fermi Systems With Long Range Interactions
We define a Banach space $\mathcal{M}_{1}$ of models for fermions or quantum spins in the lattice with long range interactions and explicit the structure of (generalized) equilibrium states for any $\mathfrak{m}\in \mathcal{M}_{1}$. In particular, we give a first answer to an old open problem in mathematical physics - first addressed by Ginibre in 1968 within a different context - about the validity of the so-called Bogoliubov approximation on the level of states. Depending on the model $\mathfrak{m}\in \mathcal{M}_{1}$, our method provides a systematic way to study all its correlation functions and can thus be used to analyze the physics of long range interactions. Furthermore, we show tha…
Beyond the dilute Bose gas
Abstract We discuss problems of three dimensional Bose gases in interaction but non-dilute. We then use the theory of a “weakly interacting” Bose gas recently analyzed as an attempt to obtain further insights into non-dilute systems. In particular, we develop the theory with additional remarks, discussions and a slight modification. The article concludes with a much more detailed analysis of the Bose condensate depletion, as well as a study of the two-fluid model of Tisza and Landau: the coexistence of normal and superfluid liquids at sufficiently low temperatures. In fact, even if it is based on one debatable hypothesis, this non-dilute gas qualitatively leads, up to Landau's “ T 4 law”, t…