0000000000399451

AUTHOR

Giacomo Balistreri

Design and Fabrication of Terahertz Bragg Gratings on a Two-Wire Waveguide

In this study, we present the design and the fabrication procedure of waveguide-integrated Bragg Gratings operating at THz frequencies.

research product

Time‐Domain Integration of Broadband Terahertz Pulses in a Tapered Two‐Wire Waveguide

In this work, the time-domain integration of broadband terahertz (THz) pulses via a tapered two-wire waveguide (TTWWG) is reported. Such a guiding structure consists of two metallic wires separated by a variable air gap that shrinks down to a subwavelength size as the movement takes from the waveguide input to its output. It is shown that while an input THz pulse propagates toward the subwavelength output gap, it is reshaped into its first-order time integral waveform. In order to prove the TTWWG time integration functionality, the THz pulse is detected directly within the output gap of the waveguide, so as to prevent the outcoupling diffraction from altering the shape of the time-integrate…

research product

Time-Domain Integration of Terahertz pulses

We report on the time-domain integration of terahertz pulses obtained via the tight confinement of the radiation in a tapered two-wire waveguide. Both simulation and experimental results prove the time integration capability of this structure.

research product

Dependence of Terahertz Emission and Detection in Photoconductive Antennas on Laser Parameters

In this study, we employ a standard Terahertz time-domain spectroscopy (THz-TDS) setup based on two photoconductive antennas (PCAs) for THz radiation generation and detection. The characterization of the emission and detection performance as a function of the input pulse wavelength and bandwidth is performed.

research product

Implementation of signal-processing functionalities in the Terahertz frequency domain

research product

Terahertz Time-Domain Spectroscopy setup based on photoconductive antennas

Despite the technical difficulties in developing efficient and compact sources and detectors for Terahertz (THz) radiation, this region of the electromagnetic spectrum is attracting an ever-increasing interest, due to its peculiar and high-potential applications in several fields, such as wideband communications, medicine, biology, non-destructive testing, security and defense. Within such contexts, the most widespread approach aiming to deal with THz pulses is based on the THz Time-Domain Spectroscopy (THz-TDS) system. In this work, we present our experimental results obtained by means of a THz-TDS set-up based on photoconductive antennas for both the generation and detection stage. It is …

research product

Terahertz time-domain spectroscopy based on photoconductive antennas

In this work, we present our first experimental results obtained by means of a THz-TDS setup based on photoconductive antennas (PCAs). The main elements of the setup are: i) a mode-locked Ti:Sapphire femtosecond laser (Mai-Tai SP - Spectra Physics), providing optical pulses at 800±20 nm with a duration < 50 fs and repetition rate of 84 MHz; ii) two photoconductive antennas, made in LT-GaAs (Low-Grown Temperature Gallium Arsenide), operating as THz emitter and detector; iii) an optical delay line.

research product

Tapered Two-Wire Waveguide for Time-Domain Integration of Broadband Terahertz Pulses

We show the time-domain integration of terahertz pulses achieved in a sub-wavelength, tapered two-wire waveguide. Both simulation and experimental results prove the time integration functionality of this waveguide topology.

research product

Versatile metal-wire waveguides for broadband terahertz signal processing and multiplexing.

AbstractWaveguides play a pivotal role in the full deployment of terahertz communication systems. Besides signal transporting, innovative terahertz waveguides are required to provide versatile signal-processing functionalities. Despite fundamental components, such as Bragg gratings, have been recently realized, they typically rely on complex hybridization, in turn making it extremely challenging to go beyond the most elementary functions. Here, we propose a universal approach, in which multiscale-structured Bragg gratings can be directly etched on metal-wires. Such an approach, in combination with diverse waveguide designs, allows for the realization of a unique platform with remarkable str…

research product