0000000000400167

AUTHOR

Stefan Borneis

Transient collisionally excited X-ray laser in nickel-like zirconium pumped with the PHELIX laser facility

A transient collisionally excited X-ray laser has been put into operation using the front end of the PHELIX laser system as a pump laser. Strong lasing at 22 nm has been observed in nickel-like zirconium.

research product

LASER SPECTROSCOPY WITH A COOLER RING AT THE ESR (GSI) AND THE TSR (MPI HEIDELBERG)

At the TSR cooler ring at Heidelberg, laser studies were carried out using singly charged lithium and beryllium ions. Laser spectroscopy of relativistic lithium ions (v=0.04c) yielded signals with a narrow linewidth, suitable for an experimental test of special relativity. A dramatic reduction of the beam temperature, as defined by the longitudinal velocity spread, was achieved via laser cooling in both cases. At the ion energies available at ESR it will become possible to prepare and store bare ions up to U92+. Electron cooling was succesfully demonstrated for hydrogen-like Bi82+ ions, where a laser experiment is scheduled to study the ground-state hyperfine splitting.

research product

Precision Laser Spectroscopy of the Ground State Hyperfine Splitting of HydrogenlikeBi82+209

The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the $M1$ transition between the $F=4$ and $F=5$ hyperfine levels of the ground state of hydrogenlike $^{209}\mathrm{Bi}^{82+}$ was measured to be ${\ensuremath{\lambda}}_{0}=243.87(4)$ nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSI. In addition, the lifetime of the laser excited $F=5$ sublevel was determined to be ${\ensuremath{\tau}}_{0}=0.351(16)$ ms. The method can be applied to a number of other nuclei and should allow a novel test of QED corrections in the previously unexplored combination of strong magnetic and electric fields in highly cha…

research product

<title>New PW stretcher-compressor design for PHELIX laser</title>

With PHELIX (Petawatt High Energy Laser for heavy Ion EXperiments) a high energy/ultra-high intensity laser system is currently under construction at the GSI (Gesellschaft fur SchwerIonenforschung, Germany). In combination with the high current high energy ion accelerator facility this will provide worldwide unique experimental opportunities in the field of dense plasma physics and inertial fusion research. In the long pulse mode the laser system will provide laser pulses of up to 5 kJ in 1-10 ns pulses. In the high intensity mode pulse powers in excess of 1 PW will be achieved. For this the well known technique of chirped pulse amplification (CPA) will be implemented. A new CPA stretcher-c…

research product