Temperature measurements along a vertical borehole heat exchanger: A method comparison
Abstract The standard thermal response tests (TRT) provide integral and effective thermal parameters of the ground in the vicinity of borehole heat exchangers (BHE). However, typical ground properties are heterogeneously distributed. As a result, advanced TRT such as distributed and enhanced TRT are growing in popularity as they provide more spatial information of the thermal properties. Thus, the objective of this study is to compare various instruments to measure the depth-dependent temperatures using standard Pt100-sensors, fiber optical thermometers and novel instruments such as Geowire, Geoball and GEOsniff®. The investigations are carried out in a 30 m length test borehole. The result…
Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations
Ground thermal conductivity and borehole thermal resistance are key parameters for the design of closed Ground-Source Heat Pump (GSHP) systems. The standard method to determine these parameters is the Thermal Response Test (TRT). This test analyses the ground thermal response to a constant heat power injection or extraction by measuring inlet and outlet temperatures of the fluid at the top of the borehole heat exchanger. These data are commonly evaluated by models considering the ground being homogeneous and isotropic. This approach estimates an effective ground thermal conductivity representing an average of the thermal conductivity of the different layers crossed by perforation. In order …
Novel instruments and methods to estimate depth-specific thermal properties in borehole heat exchangers
Standard thermal response tests (TRT) are typically carried out to evaluate subsurface thermal parameters for the design and performance evaluation of borehole heat exchangers (BHE). Typical interp ...
Novel Instrument for Temperature Measurements in Borehole Heat Exchangers
The thermal response test (TRT) is the standard method for characterizing the thermal properties of the ground and those of a borehole heat exchanger (BHE). During the TRT, the inlet and outlet temperatures of the BHE are monitored. However, this test typically considers the ground as a homogeneous, isotropic, and infinite media, and therefore, it only determines the bulk and effective parameters, such as effective thermal conductivity and thermal borehole resistance. Hence, the enhanced TRT protocols are necessary where the depth-dependent temperatures are measured to estimate depth-specific thermal properties. Thus, a novel instrument with a data logger to automatically obtain the tempera…