0000000000400487

AUTHOR

Thue W. Schwartz

0000-0002-0261-6904

Dissecting signaling and functions of adhesion G protein-coupled receptors

G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR class. Adhesion-GPCRs possess a unique molecular structure, with extended N-termini containing various adhesion domains. In addition, many adhesion-GPCRs are autoproteolytically cleaved into an N-terminal fragment (NTF, NT, α-subunit) and C-terminal fragment (CTF, CT, β-subunit) at a conserved GPCR au…

research product

International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors

The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1…

research product

Neuropeptide Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

Neuropeptide Y (NPY) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Neuropeptide Y Receptors [156]) are activated by the endogenous peptides neuropeptide Y, neuropeptide Y-(3-36), peptide YY, PYY-(3-36) and pancreatic polypeptide (PP). The receptor originally identified as the Y3 receptor has been identified as the CXCR4 chemokine recepter (originally named LESTR, [137]). The y6 receptor is a functional gene product in mouse, absent in rat, but contains a frame-shift mutation in primates producing a truncated non-functional gene [83]. Many of the agonists exhibit differing degrees of selectivity dependent on the species examined. For example, the potency of PP is greater…

research product