0000000000400544

AUTHOR

E. Rivera-perez

In-Fiber Acousto-Optics for the Broadband Measurement of the UV-Induced Refractive Index Change in Photosensitive Fibers

In fiber acousto-optics has been demonstrated to be a versatile, highly sensitive technique that allows characterizing different parameters of singlemode or few-mode fibers, such as dispersion curves, radius or core refractive index, in a broadband wavelength range. The working principle of the technique relies in the fact that a variation in a parameter of the fiber leads to a shift in the optical wavelength that fulfills the acousto-optic phase matching condition. Thus, by measuring this wavelength shift it is possible to evaluate the change in the parameter under study. The technique shows a low detection limit: for example, it is as low as 10-8 for the core refractive index, in singlemo…

research product

Analysis of whispering gallery modes resonators: wave propagation and energy balance models

Electromagnetic whispering gallery modes (WGM) are surface waves guided by the curvature of an interface. Microspheres, microdisks and microcylinders –as for example standard optical fibers– are high quality microresonators for the WGM. In fact, they can be regarded as compact and small ring resonators. Here, we present a comparison between wave propagation and energy balance models, stablishing the equivalence and discussing the basic characteristics of these two complementary approaches.

research product

Acousto-optic interaction in polyimide coated optical fibers with flexural waves

Acousto-optic coupling in polyimide-coated single-mode optical fibers using flexural elastic waves is demonstrated. The effect of the polyimide coating on the acousto-optic interaction process is analyzed in detailed. Theoretical and experimental results are in good agreement. Although the elastic attenuation is significant, we show that acousto-optic coupling can be produced with a reasonably good efficiency. To our knowledge, it is the first experimental demonstration of acousto-optic coupling in optical fibers with robust protective coating.

research product