Singlet‐Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism
Abstract Hyperpolarization‐enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13C, 15N, or 129Xe due to their long spin‐polarization lifetimes and the absence of a proton‐background signal from water and fat in the images. Here we present a novel type of 1H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long‐lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para‐enriched hydrogen gas, and the proton singlet order in fumarate is released a…