0000000000401085
AUTHOR
Yaryna Lytvynenko
Coupling of ferromagnetic and antiferromagnetic spin dynamics in Mn$_{2}$Au/NiFe thin-film bilayers
We investigate magnetization dynamics of Mn$_{2}$Au/Py (Ni$_{80}$Fe$_{20}$) thin film bilayers using broadband ferromagnetic resonance (FMR) and Brillouin light scattering spectroscopy. Our bilayers exhibit two resonant modes with zero-field frequencies up to almost 40 GHz, far above the single-layer Py FMR. Our model calculations attribute these modes to the coupling of the Py FMR and the two antiferromagnetic resonance (AFMR) modes of Mn2Au. The coupling-strength is in the order of 1.6 T$\cdot$nm at room temperature for nm-thick Py. Our model reveals the dependence of the hybrid modes on the AFMR frequencies and interfacial coupling as well as the evanescent character of the spin waves th…
Optical read-out of the N\'eel vector in metallic antiferromagnet Mn$_{2}$Au
Metallic antiferromagnets with broken inversion symmetry on the two sublattices, strong spin-orbit coupling and high N\'{e}el temperatures offer new opportunities for applications in spintronics. Especially Mn$_{2}$Au, with high N\'{e}el temperature and conductivity, is particularly interesting for real-world applications. Here, manipulation of the orientation of the staggered magnetization,\textit{\ i.e.} the N\'{e}el vector, by current pulses has been recently demonstrated, with the read-out limited to studies of anisotropic magnetoresistance or X-ray magnetic linear dichroism. Here, we report on the in-plane reflectivity anisotropy of Mn$_{2}$Au (001) films, which were N\'{e}el vector al…