0000000000401091

AUTHOR

Philipp Pirro

showing 8 related works from this author

Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide

2012

We report on the investigation of spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si (CMFS) Heusler waveguide. The reduced magnetic losses of this compound compared to the commonly used Ni81Fe19 allow for the observation of spin-wave propagation over distances as high as 75 μm via Brillouin light scattering (BLS) microscopy. In the linear regime, a maximum decay length of 16.7 μm of the spin-wave amplitude was found. The coherence length of the observed spin-wave modes was estimated to be at least 16 μm via phase-resolved BLS techniques.

Materials sciencePhysics and Astronomy (miscellaneous)business.industryLight scatteringlaw.inventionCoherence lengthBrillouin zoneAmplitudeOpticsSpin wavelawDecay lengthMicroscopyCondensed Matter::Strongly Correlated ElectronsbusinessWaveguideApplied Physics Letters
researchProduct

Roadmap on STIRAP applications

2019

STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in …

PhotonAtomic Physics (physics.atom-ph)Digital storageStimulated Raman adiabatic passage02 engineering and technologyStimulated Raman adiabatic passage (STIRAP)01 natural scienceslaw.inventionPhysics - Atomic PhysicsFTIR SPECTROSCOPYstimulated Raman adiabatic passage (STIRAP)lawStereochemistryRare earthsStatistical physicsMetal ionsmolecular Rydberg statesQCparity violationPhysicseducation.field_of_studyQuantum PhysicsElectric dipole momentsCoherent population transfer021001 nanoscience & nanotechnologyCondensed Matter Physicsacoustic waves; molecular Rydberg states; nuclear coherent population transfer; parity violation; spin waves; stimulated Raman adiabatic passage (STIRAP); ultracold moleculesADIABATIC PASSAGEAtomic and Molecular Physics and OpticsChemical DynamicsMolecular beamsVIOLATING ENERGY DIFFERENCEResearch group A. Pálffy – Division C. H. KeitelStimulated emission0210 nano-technologyCoherence (physics)Experimental parametersPopulationFOS: Physical sciencesacoustic waves530spin wavesMolecular Rydberg statesELECTROMAGNETICALLY INDUCED TRANSPARENCYSINGLE PHOTONSQuantum statePhysics - Chemical Physics0103 physical sciencesUltracold moleculesSpontaneous emissionddc:530Nuclear coherent population transfer010306 general physicseducationStimulated Raman adiabatic passageChemical Physics (physics.chem-ph)Rare-earth-ion doped crystalsPhotonsQuantum opticsnuclear coherent population transferBROAD-BANDControlled manipulationsPOLAR-MOLECULESMoleculesRydberg statesLaserSuperconducting quantum circuitAcoustic wavesParity violationstimulated Raman adiabatic passage (STIRAP); ultracold molecules; parity violation; spin waves; acoustic waves; molecular Rydberg states; nuclear coherent population transferDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikultracold moleculesQuantum Physics (quant-ph)QUANTUM GASSpin waves
researchProduct

Coupling of ferromagnetic and antiferromagnetic spin dynamics in Mn$_{2}$Au/NiFe thin-film bilayers

2023

We investigate magnetization dynamics of Mn$_{2}$Au/Py (Ni$_{80}$Fe$_{20}$) thin film bilayers using broadband ferromagnetic resonance (FMR) and Brillouin light scattering spectroscopy. Our bilayers exhibit two resonant modes with zero-field frequencies up to almost 40 GHz, far above the single-layer Py FMR. Our model calculations attribute these modes to the coupling of the Py FMR and the two antiferromagnetic resonance (AFMR) modes of Mn2Au. The coupling-strength is in the order of 1.6 T$\cdot$nm at room temperature for nm-thick Py. Our model reveals the dependence of the hybrid modes on the AFMR frequencies and interfacial coupling as well as the evanescent character of the spin waves th…

Condensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciences
researchProduct

Heisenberg Exchange and Dzyaloshinskii–Moriya Interaction in Ultrathin Pt(W)/CoFeB Single and Multilayers

2021

We present results of the analysis of Brillouin light-scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation, we independently extract the Heisenberg exchange interaction (also referred to as symmetric exchange interaction), the Dzyaloshinskii–Moriya interaction (DMI, also referred to as antisymmetric exchange interaction), and the anisotropy field. We find a large DMI in CoFeB thin films adjacent to a Pt layer and nearly vanishing DMI for CoFeB films adjacent to a W layer. Furthermore, the influence of the dipolar interaction on the dispersion relatio…

Materials scienceAntisymmetric exchangeCondensed matter physicsMagnetoresistanceExchange interactionElectronic Optical and Magnetic MaterialsBrillouin zoneCondensed Matter::Materials ScienceSpin waveDispersion relationDispersion (optics)Condensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringAnisotropyIEEE Transactions on Magnetics
researchProduct

Chiral excitations of magnetic droplet solitons driven by their own inertia

2019

The inertial effects of magnetic solitons play a crucial role in their dynamics and stability. Yet governing their inertial effects is a challenge for their use in real devices. Here, we show how to control the inertial effects of magnetic droplet solitons. Magnetic droplets are strongly nonlinear and localized autosolitons than can form in current-driven nanocontacts. Droplets can be considered as dynamical particles with an effective mass. We show that the dynamical droplet bears a second excitation under its own inertia. These excitations comprise a chiral profile, and appear when the droplet resists the force induced by the Oersted field of the current injected into the nanocontact. We …

PhysicsInertial frame of referenceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsOerstedmedia_common.quotation_subjectFOS: Physical sciencesInertiaPhysics::Fluid DynamicsNonlinear systemEffective mass (solid-state physics)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)TorqueExcitationmedia_common
researchProduct

Enhanced thermally-activated skyrmion diffusion in synthetic antiferromagnetic systems with tunable effective topological charge

2022

Magnetic skyrmions, topologically-stabilized spin textures that emerge in particular magnetic systems, have attracted attention due to a variety of electromagnetic responses that are governed by the topology. A well-studied effect of topology on the deterministic and drift motion under a nonequilibrium excitation is the so-called skyrmion Hall effect. For stochastic diffusive motion, the effect of topology is expected to have a drastically stronger impact, but the predicted even qualitative impact has not been demonstrated. The required tuning of the topology to achieve zero effective topological charge can be achieved using antiferromagnetic skyrmions. However, the diffusive motion has pre…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
researchProduct

古典波動現象のトポロジーによる特徴付け; 静磁スピン波表面モードのトポロジカルな起源

2019

We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriat…

Hamiltonian mechanicsSurface (mathematics)PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsFOS: Physical sciencesGeneral Physics and AstronomyPhysik (inkl. Astronomie)Topology01 natural sciencesVortexBrillouin zonesymbols.namesakeSpin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencessymbols010306 general physicsTopology (chemistry)Symplectic geometryPhysical review letters
researchProduct

Nonlinear Dynamics of Topological Ferromagnetic Textures for Frequency Multiplication

2020

We propose that the non-linear radio-frequency dynamics and nanoscale size of topological magnetic structures associated to their well-defined internal modes advocate for their use as in-materio scalable frequency multipliers for spintronic systems. Frequency multipliers allow for frequency conversion between input and output frequencies, and thereby significantly increase the range of controllably accessible frequencies. In particular, we explore the excitation of eigenmodes of topological magnetic textures by fractions of the corresponding eigenfrequencies. We show via micromagnetic simulations that low-frequency perturbations to the system can efficiently excite bounded modes with a high…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsTexture (cosmology)SkyrmionFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyTopology01 natural sciencesVortexNonlinear systemAmplitudeFerromagnetismMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physics0210 nano-technologyExcitationPhysical Review Applied
researchProduct