Probing chemical freeze-out criteria in relativistic nuclear collisions with coarse grained transport simulations
We introduce a novel approach based on elastic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from E$_\mathrm{lab}=1.23$ AGeV to $\sqrt{s_\mathrm{NN}}=62.4$ GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze-out distribution is reconstructed from the pions through several decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excitation reactions. The extracted average temperature and baryon chemical potential are then compared to statistic…
Magnetic fields in heavy ion collisions: flow and charge transport
At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…
Elliptic flow and $$R_{AA}$$ of $$\text {D}$$ mesons at FAIR comparing the UrQMD hybrid model and the coarse-graining approach
The European physical journal / C Particles and fields C 79(1), 52 (2019). doi:10.1140/epjc/s10052-019-6537-6
Formation Of Hypernuclei In Evaporation And Fission Processes
There are excellent opportunities to produce excited heavy hyper residues in relativistic hadron and peripheral heavy-ion collisions. We investigate the disintegration of such residues into hyper nuclei via evaporation of baryons and light clusters and their fission. Previously these processes were well known for normal nuclei as the decay channels at low excitation energies. We have generalized these models for the case of hyper-matter. In this way we make extension of nuclear reaction studies at low temperature into the strange sector. We demonstrate how the new decay channels can be integrated in the whole disintegration process. Their importance for mass and isotope distributions of pro…
A first estimate of $\eta/s$ in Au+Au reactions at E$_{\rm lab}=1.23$ $A$GeV
The HADES experiment at GSI has recently provided data on the flow coefficients $v_1,...,v_4$ for protons in Au+Au reactions at $E_{\rm lab} = 1.23$~$A$GeV (or $\sqrt{s_\mathrm{NN}}=2.4$ GeV). This data allows to estimate the shear viscosity over entropy ratio, $\eta/s$ at low energies via a coarse graining analysis of the UrQMD transport simulations of the flow harmonics in comparison to the experimental data. By this we can provide for the first time an estimate of $\eta/s\approx0.65\pm0.15$ (or $(8\pm2)\,(4\pi)^{-1}$) at such low energies.
Temperatures and chemical potentials at kinetic freeze-out in relativistic heavy ion collisions from coarse grained transport simulations
Using the UrQMD/coarse graining approach we explore the kinetic freeze-out stage in central Au + Au collisions at various energies. These studies allow us to obtain detailed information on the thermodynamic properties (e.g. temperature and chemical potential) of the system during the kinetic decoupling stage. We explore five relevant collision energies in detail, ranging from $\sqrt{s_{NN}}=2.4\,\mathrm{GeV}$ (GSI-SIS) to $\sqrt{s_{NN}}=200\,\mathrm{GeV}$ (RHIC). By adopting a standard Hadron Resonance Gas equation of state, we determine the average temperature $\langle T \rangle$ and the average baryon chemical potential $\langle\mu_{\mathrm{B}}\rangle$ on the space-time hyper-surface of l…
Formation of hypernuclei in heavy-ion collisions around the threshold energies
In relativistic ion collisions there are excellent opportunities to produce and investigate hyper-nuclei. We have systematically studied the formation of hypernuclear spectator residues in peripheral heavy-ion collisions with the transport DCM and UrQMD models. The hyperon capture was calculated within the potential and coalescence approaches. We demonstrate that even at the beam energies around and lower than the threshold for producing Lambda hyperons in binary nucleon-nucleon interactions a considerable amount of hypernuclei, including multi-strange ones, can be produced. This is important for preparation of new experiments on hypernuclei in the wide energy range. The uncertainties of th…