0000000000402479

AUTHOR

Henrik C. Pedersen

0000-0002-1034-3280

Discrete Learning Control with Application to Hydraulic Actuators

In this paper the robustness of a class of learning control algorithms to state disturbances, output noise, and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a concise proof, bounds on the asymptotic trajectory errors for the learned input and the corresponding state and output trajectories. Furthermore, these bounds are continuous functions of the bounds on the initial condition errors, state disturbance, and output noise, and the bounds are zero in the absence of these disturbances.

research product

Application of Model Predictive Control in Discrete Displacement Cylinders to Drive a Knuckle Boom Crane

In this paper, two Discrete Displacement Cylinders (DDCs) are used to drive the boom of a knuckle boom crane. DDCs operate by connecting one of several available pressure levels to each chamber in order to produce different forces. A trade-off exists with such systems, between the accuracy of tracking and energy dissipation due to switching. A popular way to approach this problem is a Force Shifting Algorithm (FSA). However, in this paper, the trade-off is managed by use of a Model Predictive Control (MPC) algorithm. The tracking accuracy and energy efficiency of the MPC and FSA strategies for DDCs are compared to a PID strategy for standard cylinders. The comparison is obtained by use of a…

research product

Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design

Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finall…

research product