Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data par…
XLCS: A New Bit-Parallel Longest Common Subsequence Algorithm on Xeon Phi Clusters
Finding the longest common subsequence (LCS) of two strings is a classical problem in bioinformatics. A basic approach to solve this problem is based on dynamic programming. As the biological sequence databases are growing continuously, bit-parallel sequence comparison algorithms are becoming increasingly important. In this paper, we present XLCS, a new parallel implementation to accelerate the LCS algorithm on Xeon Phi clusters by performing bit-wise operations. We have designed an asynchronous IO framework to improve the data transfer efficiency. To make full use of the computing resources of Xeon Phi clusters, we use three levels of parallelism: node-level, thread-level and vector-level.…
mD3DOCKxb: An Ultra-Scalable CPU-MIC Coordinated Virtual Screening Framework
Molecular docking is an important method in computational drug discovery. In large-scale virtual screening, millions of small drug-like molecules (chemical compounds) are compared against a designated target protein (receptor). Depending on the utilized docking algorithm for screening, this can take several weeks on conventional HPC systems. However, for certain applications including large-scale screening tasks for newly emerging infectious diseases such high runtimes can be highly prohibitive. In this paper, we investigate how the massively parallel neo-heterogeneous architecture of Tianhe-2 Supercomputer consisting of thousands of nodes comprising CPUs and MIC coprocessors that can effic…
Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax
The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degene…