0000000000403182

AUTHOR

Serge Miguet

0000-0001-7722-9899

A segmentation algorithm for noisy images

International audience; This paper presents a segmentation algorithm for gray-level images and addresses issues related to its performance on noisy images. It formulates an image segmentation problem as a partition of a weighted image neighborhood hypergraph. To overcome the computational difficulty of directly solving this problem, a multilevel hypergraph partitioning has been used. To evaluate the algorithm, we have studied how noise affects the performance of the algorithm. The alpha-stable noise is considered and its effects on the algorithm are studied. Key words : graph, hypergraph, neighborhood hypergraph, multilevel hypergraph partitioning, image segmentation and noise removal.

research product

K-Way Hypergraph Partitioning And Color Image Segmentation

International audience

research product

Color Image Segmentation: The Hypergraph Framework

International audience; Color Image Segmentation: The Hypergraph Framework

research product

Weighted Adaptive Neighborhood HypergraphPartitioning for Image Segmentation

International audience; The aim of this paper is to present an improvement of a previously published algorithm. The proposed approach is performed in two steps. In the first step, we generate the Weighted Adaptive Neighborhood Hypergraph (WAINH) of the given gray-scale image. In the second step, we partition the WAINH using a multilevel hypergraph partitioning technique. To evaluate the algorithm performances, experiments were carried out on medical and natural images. The results show that the proposed segmentation approach is more accurate than the graph based segmentation algorithm using normalized cut criteria.Key words hypergraph, neighborhood hypergraph, hypergraph partitioning, image…

research product

Neighborhood Hypergraph Partitioning for Image Segmentation

International audience; The aim of this paper is to introduce a multilevel neighborhoodhypergraph partitioning for image segmentation. Our proposedapproach uses the image neighborhood hypergraph model introduced inour last works and the algorithm of multilevel hypergraphpartitioning introduced by George Karypis. To evaluate the algorithmperformance, experiments were carried out on a group of gray scaleimages. The results show that the proposed segmentation approachfind the region properly from images as compared to imagesegmentation algorithm using normalized cut criteria.Key words :Graph, Hypergraph, Neighborhood hypergraph, multilevel hypergraph partitioning, image segmentation, edge dete…

research product