0000000000403266

AUTHOR

Sandra Zedler

showing 3 related works from this author

A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates

2014

Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), Dcu…

Molecular Sequence Datamedicine.disease_causeModels BiologicalMicrobiologyDivalentBacterial ProteinsFumaratesmedicineDicarboxylic AcidsAmino Acid SequenceAnaerobiosisCarbon RadioisotopesEscherichia coliPhylogenyDicarboxylic Acid Transporterschemistry.chemical_classificationbiologySodiumBiological TransportSuccinatesActinobacillusGene Expression Regulation BacterialFumarate reductasebiology.organism_classificationAerobiosisTransport proteinActinobacillus succinogenesGlucoseBiochemistrychemistrySymporterFermentationCotransporterSequence AlignmentMicrobiology
researchProduct

L‐Aspartate as a high‐quality nitrogen source in Escherichia coli : Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐…

2020

Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen meta…

endocrine system diseasesNitrogenGlutaminePII Nitrogen Regulatory ProteinsNitrogen assimilationDeaminationGlutamic AcidBiologymedicine.disease_causeAspartate Ammonia-LyaseMicrobiology03 medical and health sciencesBacterial ProteinsAmmoniaEscherichia colimedicineProtein Interaction Domains and MotifsNucleotideMolecular BiologyEscherichia coliNitrogen cycle030304 developmental biologyDicarboxylic Acid Transporterschemistry.chemical_classificationAspartic Acid0303 health sciences030306 microbiologyEscherichia coli ProteinsAssimilation (biology)Gene Expression Regulation BacterialAmino acidEnzymechemistryBiochemistryMutationKetoglutaric AcidsMetabolic Networks and PathwaysMolecular Microbiology
researchProduct

DcuA of aerobically grownEscherichia coliserves as a nitrogen shuttle (L‐aspartate/fumarate) for nitrogen uptake

2018

DcuA of Escherichia coli is known as an alternative C4 -dicarboxylate transporter for the main anaerobic C4 -dicarboxylate transporter DcuB. Since dcuA is expressed constitutively under aerobic and anaerobic conditions, DcuA was suggested to serve aerobically as a backup for the aerobic (DctA) transporter, or for the anabolic uptake of C4 -dicarboxylates. In this work, it is shown that DcuA is required for aerobic growth with L-aspartate as a nitrogen source, whereas for growth with L-aspartate as a carbon source, DctA was needed. Strains with DcuA catalyzed L-aspartate and C4 -dicarboxylate uptake (like DctA), or an L-aspartate/C4 -dicarboxylate antiport (unlike DctA). DcuA preferred L-asp…

Glycerol0301 basic medicineendocrine system diseasesAntiporter030106 microbiologyMalateschemistry.chemical_elementBiologymedicine.disease_causeMicrobiology03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsFumaratesAspartic acidEscherichia colimedicineGlycerolMolecular BiologyEscherichia coliDicarboxylic Acid TransportersAspartic AcidEscherichia coli Proteinsnutritional and metabolic diseasesBiological TransportTransporterbiology.organism_classificationNitrogen030104 developmental biologychemistryBiochemistryAnaerobic exercisehormones hormone substitutes and hormone antagonistsBacteriaMolecular Microbiology
researchProduct