0000000000403887

AUTHOR

Moona Mazher

Automatic Segmentation Using a Hybrid Dense Network Integrated With an 3D-Atrous Spatial Pyramid Pooling Module for Computed Tomography (CT) Imaging

Computed tomography (CT) with a contrast-enhanced imaging technique is extensively proposed for the assessment and segmentation of multiple organs, especially organs at risk. It is an important factor involved in the decision making in clinical applications. Automatic segmentation and extraction of abdominal organs, such as thoracic organs at risk, from CT images are challenging tasks due to the low contrast of pixel values surrounding other organs. Various deep learning models based on 2D and 3D convolutional neural networks have been proposed for the segmentation of medical images because of their automatic feature extraction capability based on large labeled datasets. In this paper, we p…

research product

Hybrid 3D-ResNet Deep Learning Model for Automatic Segmentation of Thoracic Organs at Risk in CT Images

In image radiation therapy, accurate segmentation of organs at risk (OARs) is a very essential task and has clinical applications in cancer treatment. The segmentation of organs close to lung, breast, or esophageal cancer is a routine and time-consuming process. The automatic segmentation of organs at risk would be an essential part of treatment planning for patients suffering radiotherapy. The position and shape variation, morphology inherent and low soft tissue contrast between neighboring organs across each patient’s scans is the challenging task for automatic segmentation of OARs in Computed Tomography (CT) images. The objective of this paper is to use automatic segmentation of the orga…

research product