0000000000404269

AUTHOR

Frank D. Verbraak

showing 3 related works from this author

Use in clinical practice of an automated screening method of diabetic retinopathy that can be derived using a diagnostic artificial intelligence syst…

2021

Resumen Antecedentes y objetivo Comparar el rendimiento diagnostico de un sistema de inteligencia artificial (IA) de diagnostico autonomo para el diagnostico de retinopatia diabetica derivable (RDR) con la clasificacion manual. Materiales y metodos Sujetos con diabetes tipo 1 y 2 participaron en un programa de cribado de retinopatia diabetica (RD) entre 2011-2012. Se recogieron dos imagenes de cada ojo. Se obtuvieron imagenes retinianas no identificables, una centrada en el disco y otra en la fovea. Los examenes se clasificaron con el sistema de IA autonomo y manualmente por parte de oftalmologos anonimos. Los resultados del sistema de IA y de la clasificacion manual se compararon en cuanto…

Ophthalmology
researchProduct

Use in clinical practice of an automated screening method of diabetic retinopathy that can be derived using a diagnostic artificial intelligence syst…

2020

Abstract Background and Objective To compare the diagnostic performance of an autonomous diagnostic artificial intelligence (AI) system for the diagnosis of derivable diabetic retinopathy (RDR) with manual classification. Materials and Methods Patients with type 1 and type 2 diabetes participated in a diabetic retinopathy (RD) screening program between 2011–2012. 2 images of each eye were collected. Unidentifiable retinal images were obtained, one centered on the disc and one on the fovea. The exams were classified with th e autonomous AI system and manually by anonymous ophthalmologists. The results of the AI system and manual classification were compared in terms of sensitivity and specif…

medicine.medical_specialtybusiness.industry030209 endocrinology & metabolismGeneral MedicinePrimary careDiabetic retinopathyType 2 diabetesmedicine.diseaseDecreased visionClinical Practice03 medical and health sciences0302 clinical medicineInternal medicineDiabetes mellitus030221 ophthalmology & optometryScreening methodmedicinebusinessMacular edemaArchivos de la Sociedad Española de Oftalmología (English Edition)
researchProduct

Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Popula…

2020

Purpose: The purpose of this study is to compare the diagnostic performance of an autonomous artificial intelligence (AI) system for the diagnosis of referable diabetic retinopathy (RDR) to manual grading by Spanish ophthalmologists. Methods: Subjects with type 1 and 2 diabetes participated in a diabetic retinopathy (DR) screening program in 2011 to 2012 in Valencia (Spain), and two images per eye were collected according to their standard protocol. Mydriatic drops were used in all patients. Retinal images—one disc and one fovea centered—were obtained under the Medical Research Ethics Committee approval and de-identified. Exams were graded by the autonomous AI system (IDx-DR, Coralville, Io…

Pediatricsmedicine.medical_specialtyArtificial Intelligence SystemEndocrinology Diabetes and MetabolismBiomedical Engineering030209 endocrinology & metabolismBioengineeringRetina03 medical and health sciences0302 clinical medicinediabetic retinopathy screeningDiabetes MellitusInternal MedicinemedicineHumansMass ScreeningPrimary Health Carebusiness.industryDiabetic retinopathy screeningOriginal ArticlesDiabetic retinopathymedicine.diseaseartificial intelligenceSpanish populationdiabetic retinopathypopulation screening030221 ophthalmology & optometryPopulation screeningbusinessJournal of diabetes science and technology (Online)
researchProduct