0000000000404335
AUTHOR
Nils Stöbener
Application of Resonance Ionization Mass Spectrometry for Ultratrace Analysis of Technetium
This work shows the ability of resonance ionization mass spectrometry (RIMS) to determine 99gTc at the ultratrace level. The characterization of the prepared samples by X-ray photoelectron spectroscopy (XPS) and optimization of the RIMS setup for this purpose, as well as the application of the RIMS method to a soil sample, are presented in this article. 97Tc was used as a tracer isotope to determine the amount of 99gTc in a soil sample with RIMS. With 8.8 × 1010 atoms of 97Tc as the tracer, the concentration of 99gTc was found to be 1.5 × 109 atoms per gram of dried sample material, demonstrating the sensitivity of the method. Furthermore, it could be shown that the 97Tc solution contained …
Determination of a three-step excitation and ionization scheme for resonance ionization and ultratrace analysis of Np-237
Abstract The long-lived radio isotope 237 Np is generated within the nuclear fuel cycle and represents a major hazard in the final disposal of nuclear waste. Related geochemical research requires sensitive methods for the detection of ultratrace amounts of neptunium in environmental samples. Resonance ionization mass spectrometry (RIMS) has proven to be one of the most sensitive methods for the detection of plutonium. A precondition for the application of RIMS to ultratrace analysis of neptunium is the knowledge of an efficient and selective scheme for optical excitation and ionization. Therefore, a multitude of medium to high-lying atomic levels in neptunium was located by applying in-sour…