Transitive factorizations in the hyperoctahedral group
The classical Hurwitz enumeration problem has a presentation in terms of transitive factor- izationsin the symmetric group. This presentationsuggestsageneralizationfromtypeAto otherfinite reflection groups and, in particular, to type B.W e study this generalization both from ac ombinatorial and a geometric point of view, with the prospect of providing am eans of understanding more of the structure of the moduli spaces of maps with an S2-symmetry. The type A case has been well studied and connects Hurwitz numbers to the moduli space of curves. W ec onjecture an analogous setting for the type B case that is studied here. 1I ntroduction Transitive factorizations of permutations into transposit…