0000000000406300

AUTHOR

M. W. Collins

Developments in numerical modelling of cardiovascular fluid dynamics

research product

Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations

An experimental and numerical study of flow and heat transfer was conducted for a crossed-corrugated geometry, representative of compact heat exchangers under transitional and weakly turbulent conditions. Three-dimensional numerical predictions were obtained by a finite volume method using a variety of approaches ranging from laminar flow assumptions to standard and low-Reynolds number k-e turbulence models, direct simulation, and large-eddy simulation. In this paper, the various computational approaches are presented and their relative performance is discussed for various geometries and Reynolds numbers; results are compared with experimental measurements and literature data. Detailed expe…

research product

Large-Eddy Simulation of Turbulent Flow and Heat Transfer in Plane and Rib-Roughened Channels

Large-eddy simulation results are presented and discussed for turbulent flow and heat transfer in a plane channel with and without transverse square ribs on one of the walls. They were obtained with the finite-difference code Harwell-FLOW3D, Release 2, by using the PISOC pressure-velocity coupling algorithm, central differencing in space, and Crank-Nicolson time stepping. A simple Smagorinsky model, with van Driest damping near the walls, was implemented to model subgrid scale effects. Periodic boundary conditions were imposed in the streamwise and spanwise directions. The Reynolds number based on hydraulic diameter (twice the channel height) ranged from 10 000 to 40 000. Results are compar…

research product

Large-Eddy Simulation of Flow and Heat Transfer in Compact Heat Exchangers

LES results are presented for different heat exchanger geometries. Subgrid terms were usually computed by the Smagorinsky model; preliminary comparative results are also given for the ‘dynamic’ subgrid model. The numerical methods used were those implemented in a commercial general-purpose code (CFDS-FLOW3D); they included a finite-volume approach, colocated body-fitted grids, central differencing for the advection terms, the SIMPLEC algorithm, and Crank-Nicolson time stepping. Predictions arc compared with experimental measurements (including local Nu distributions), and with results from a low-Reynolds number k-e model. In most cases, LES was more ‘robust’ and required little more CPU tim…

research product

Investigation of flow and heat transfer in corrugated passages—I. Experimental results

Abstract An experimental and numerical study of flow and heat transfer was conducted for a crossed-corrugated geometry, representative of compact heat exchangers including air preheaters for fossil-fuelled power plant. In this paper, we describe the method of applying thermochromic liquid crystals and true-colour image processing to give local Nusselt number distribution over the surface, and average Nu, both of quantitative reliability; a careful uncertainty analysis is also presented. Typical experimental results for heat transfer and pressure drop are presented and discussed for various geometries and Reynolds numbers, and are compared with literature data. Numerical predictions are disc…

research product

Flow and Heat Transfer in Corrugated Passages: Direct and Large Eddy Simulation and Comparison with Experimental Results

Direct and large-eddy numerical simulations are presented for the transitional and turbulent flow with heat transfer in corrugated passages, representative of compact heat exchangers such as rotary air preheaters (regenerators), at Reynolds number ranging from 103 to 104. Pressure drop and heat transfer results are compared with wind-tunnel experimental data; the agreement is quite satisfactory, and superior to that obtained by more traditional methods.

research product

Computational fluid dynamics and its application to transport processes

Fluid transport behaviour is of great importance within the chemical process industry and in biotechnology. The complexity of this behaviour, reflected in the nature of the fundamental partial differential equations which describe it analytically, means that it has to be treated by numerical methods. In this paper the basic equations are given, and the approaches necessary to treat laminar and turbulent flows are carefully explained. As digital computers have increased in size, so has the comprehensiveness of the problems which can be treated, and the development of typical computer programs is described. Problems of accuracy and experimental validation are also surveyed, and it is shown th…

research product

Prediction of Swirling Flow in a Corrugated Channel

Laminar and turbulent flow in a corrugated channel is simulated using HARWELL-FLOW3D. The channel represents a typical cell within a proposed design for the heat-transfer element of a rotary regenerator. Velocity vectors in planes perpendicular and parallel to the axis of a corrugation are visualised using Harwell’s graphics package, OUTPROC. Both programs were mn on Harwell’s Cray 2. The velocity vector plots show clear evidence of swirl, which is thought to be the mechanism responsible for the high rates of heat transfer in this type of heat-exchanger geometry. The swirl strength is shown to be a function of the channel geometry.

research product

Modelling nanoscale fluid dynamics and transport in physiological flows

The concept of nanotechnology is discussed, and its connection with biomedical engineering is elucidated. For the specific field of nanoscale flow and transport problems of physiological relevance, some typical examples are presented, and their interaction is discussed for some classic biomechanical problems like the flow in arteries with blood-wall coupling. Then, existing computational models are presented and classified according to the length scale of interest, with emphasis on particle-fluid problems. Final remarks address the essential unity of biomedical and engineering behaviour and the possible relevance to small-scale industrial research.

research product