0000000000406646

AUTHOR

E. De Ves

Applying logistic regression to relevance feedback in image retrieval systems

This paper deals with the problem of image retrieval from large image databases. A particularly interesting problem is the retrieval of all images which are similar to one in the user's mind, taking into account his/her feedback which is expressed as positive or negative preferences for the images that the system progressively shows during the search. Here we present a novel algorithm for the incorporation of user preferences in an image retrieval system based exclusively on the visual content of the image, which is stored as a vector of low-level features. The algorithm considers the probability of an image belonging to the set of those sought by the user, and models the logit of this prob…

research product

Macular edema computer-aided evaluation in ocular vein occlusions.

This paper is concerned with the use of digital fundus imaging to detect, quantify, and follow up macular angiographic leakage due to retinal vein occlusions. Images were matched automatically. We detected those pixels with a high increment in gray level within the closest area to the foveal center. Binary images displaying leakage were obtained. The procedure was checked against two observers' agreement. Twenty-one angiographic studies were collected. Two images of each sequence were selected for digitalization. Numerical descriptors of the leakage were proposed and quantification plots were designed for each pair of images. Interobserver concordance ranged between 82 and 98% when manually…

research product

Image retrieval system for citizen services using penalized logistic regression models

This paper describes a procedure to deal with large image collections obtained by smart city services based on interaction with citizens providing pictures. The semantic gap between the low-level image features and represented concepts and situations has been addressed using image retrieval techniques. A relevance feedback procedure is proposed for Content-Based Image Retrieval (CBIR) based on the modelling of user responses. One of the novelties of the proposal is that the feedback learning procedure can use the information that citizens themselves can provide when using these services.The proposed algorithm considers the probability of an image belonging to the set of those sought by the …

research product

A novel Bayesian framework for relevance feedback in image content-based retrieval systems

This paper presents a new algorithm for image retrieval in content-based image retrieval systems. The objective of these systems is to get the images which are as similar as possible to a user query from those contained in the global image database without using textual annotations attached to the images. The main problem in obtaining a robust and effective retrieval is the gap between the low level descriptors that can be automatically extracted from the images and the user intention. The algorithm proposed here to address this problem is based on the modeling of user preferences as a probability distribution on the image space. Following a Bayesian methodology, this distribution is the pr…

research product

Bayesian estimation of edge orientations in junctions

Abstract Junctions, defined as those points of an image where two or more edges meet, play a significant role in many computer vision applications. Junction detection is a widely treated problem, and some detectors can provide even the directions of the edges that meet in a junction. The main objective of this paper is the precise estimation of such directions. It is supposed that the junction point has been previously found by some detector. Also, it is assumed that samples, possibly noisy, of orientations of the edges found in a circular window surrounding the point are available. A mixture of von Mises distributions is assumed for these data, and then a Bayesian methodology is applied to…

research product

Quantifying Mean Shape and Variability of Footprints Using Mean Sets

This paper1 presents an application of several definitions of a mean set for use in footwear design. For a given size, footprint pressure images corresponding to different individuals constitute our raw data. Appropriate footwear design needs to have knowledge of some kind of typical footprint. Former methods based on contour relevant points are highly sensitive to contour noise; moreover, they lack repeatability because of the need for the intervention of human designers. The method proposed in this paper is based on using mean sets on the thresholded images of the pressure footprints. Three definitions are used, two of them from Vorob’ev and Baddeley-Molchanov and one morphological mean p…

research product

Irregular motion recovery in fluorescein angiograms

Abstract Fluorescein angiography is a common procedure in ophthalmic practice, mainly to evaluate vascular retinopathies and choroidopathies from sequences of ocular fundus images. In order to compare the images, a reliable overlying is essential. This paper proposes some methods for the recovery of irregular motion in fluorescein angiograms (FA). The overlying is done by a three step procedure: detection of relevant points, matching points from different images and estimation of the assumed linear geometric transformation. A stochastic model (closely related to the general linear model) allows to fuse the second and third steps. Two different estimators of the geometric transformation are …

research product