0000000000406703
AUTHOR
Shinji Kohara
Experimentally constrained density-functional calculations of the amorphous structure of the prototypical phase-change materialGe2Sb2Te5
Phase change materials involve the rapid and reversible transition between nanoscale amorphous $(a\text{\ensuremath{-}})$ and crystalline $(c\text{\ensuremath{-}})$ spots in a polycrystalline film and play major roles in the multimedia world, including nonvolatile computer memory. The materials of choice are alloys of Ge, Sb, and Te, e.g., ${\text{Ge}}_{2}{\text{Sb}}_{2}{\text{Te}}_{5}$ (GST) in digital versatile disk--random access memory. There has been much speculation about the structure of $a\text{\ensuremath{-}}$ GST, but no model has yet received general acceptance. Here we optimize the structure by combining the results of density-functional calculations with high-energy x-ray diffr…
Density variations in liquid tellurium: Roles of rings, chains and cavities
Liquid tellurium has been studied by density-functional/molecular-dynamics simulations at 560, 625, 722, and 970 K and by high-energy x-ray diffraction (HEXRD) at 763 K and 973 K. The HEXRD measurements agree very well with earlier neutron-scattering data of Menelle et al. The density maximum near the melting point (722 K) reflects the competition between twofold and threefold local coordination, which results in chain formation and changed ring statistics at lower $T$, and the variation with $T$ of the volume of cavities ($26--35\text{ }\mathrm{%}$ of the total). A higher-order gradient expansion of the exchange-correlation functional is needed to describe structural details. Changes in th…
Amorphous Ge15Te85: density functional, high-energy x-ray and neutron diffraction study
The structure and electronic properties of amorphous Ge15Te85 have been studied by combining density functional (DF) simulations with high-energy x-ray and neutron diffraction measurements. Three models with 560 atoms have been constructed using reverse Monte Carlo methods constrained to (1) agree with the experimental structure factors S(Q), and have (2) energies close to the DF minimum and (3) a semiconducting band structure. The best structure is based on the melt-quenched DF structure and has a small number of Ge–Ge bonds. It shows interlocking networks of Te and GeTe with a significant fraction (22–24%) of voids (cavities). Ge occurs with both tetrahedral and 3 + 3 defective octahedral…
From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials
Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GS…
Densified low-hygroscopic form of P2O5 glass
P2O5 compound is an archetypical glass-forming oxide with a record-high hygroscopicity, which makes both the study and potential industrial uses of the glass extremely difficult. We found that the quenching from the P2O5 melt under ultrahigh pressures enables obtaining densified P2O5 glasses with a residual densification up to 12% at normal conditions. These glasses have a low hygroscopicity and can exist under air conditions for several weeks. An examination of the structure of the new form of P2O5 glass reveals a significant increase in neighbors of terminal oxygen atoms in the second coordination sphere and a cardinal decrease of the volume of nanovoids in the glassy matrix. The research…