0000000000408404

AUTHOR

Torsten Bringmann

0000-0002-0339-8144

Galactic synchrotron emission from astrophysical electrons

The interaction between the galactic magnetic field and the non-thermal population of electrons is responsible for a large part of the radio sky from 10 MHz up to several GHz. This population is mostly composed of electrons with primary and secondary origin. Cosmic ray propagation models describe their evolution in space and energy, and allow to study the impact on the radio sky in intensity and morphology at different frequencies. We consider different propagation models and test their compatibility with available radio maps. We find models highly consistent both with B/C data, the local electron flux and synchrotron emission observations. The resulting constraints on propagation models co…

research product

Radio data and synchrotron emission in consistent cosmic ray models

It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large ($L\gtrsim 15$ kpc) and, even stronger, small ($L\lesssim 1$ kpc) effective diffusive halo sizes. This has…

research product