0000000000408796

AUTHOR

Amelie Mayer

showing 2 related works from this author

A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water: lessons learned and future rese…

2018

We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice nucleating plant structural polymers. These samples include micro-crystalline cellulose (MCC), fibrous cellulose (FC) and nano-crystalline cellulose (NCC). Our experimental data show that particles resembling the MCC lab particle occur also in the atmosphere. Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at seventeen different institutions, including nine dry dispersion and ele…

Accuracy and precisionMaterials science010504 meteorology & atmospheric sciencesAnalytical chemistry01 natural scienceschemistry.chemical_compoundchemistrySpectral slopeIce nucleusParticleCelluloseSupercoolingDispersion (chemistry)Order of magnitude0105 earth and related environmental sciences
researchProduct

Comparative study on immersion freezing utilizing single-droplet levitation methods

2021

Immersion freezing experiments were performed utilizing two distinct single-droplet levitation methods. In the Mainz vertical wind tunnel, supercooled droplets of 700 µm diameter were freely floated in a vertical airstream at constant temperatures ranging from −5 to −30 ∘C, where heterogeneous freezing takes place. These investigations under isothermal conditions allow the application of the stochastic approach to analyze and interpret the results in terms of the freezing or nucleation rate. In the Mainz acoustic levitator, 2 mm diameter drops were levitated while their temperature was continuously cooling from +20 to −28 ∘C by adapting to the ambient temperature. Therefore, in this case th…

Atmospheric ScienceMaterials science010504 meteorology & atmospheric sciencesDrop (liquid)NucleationThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslcsh:QC1-999Isothermal processlcsh:Chemistrylcsh:QD1-999LevitationIce nucleusKaolinite0210 nano-technologySupercoolinglcsh:Physics0105 earth and related environmental sciencesWind tunnelAtmospheric Chemistry and Physics
researchProduct