0000000000408842
AUTHOR
S. Thiel
Coulomb Excitation of Proton-rich N=80 Isotones at HIE-ISOLDE
Abstract A projectile Coulomb-excitation experiment was performed at the radioactive ion beam facility HIE-ISOLDE at CERN. The radioactive 140Nd and 142Sm ions were post accelerated to the energy of 4.62 MeV/A and impinged on a 1.45 mg/cm2-thin 208Pb target. The γ rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL. The scattered charged particles were detected by a double-sided silicon strip detector in forward direction. Experimental γ-ray intensities were used for the determination of electromagnetic transition matrix elements. Preliminary results for the reduced transition strength of the B ( M 1 ; 2 3 + → 2 1 + ) = 0.35 ( 19 ) μ N 2 of 140Nd and a firs…
SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study
Abstract Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18–49, 50–69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in su…
Restoring the valence-shell stabilization in Nd 140
A projectile Coulomb-excitation experiment was performed at the radioactive-ion beam facility HIE-ISOLDE at CERN to obtain E2 and M1 transition matrix elements of Nd-140 using the multistep Coulomb-excitation code GOSIA. The absolute M1 strengths, B(M1; 2(2)(-) -> 2(1)(+)) = 0.033(8)mu(2)(N), B(M1 ; 2(3)(+) -> 2(1)(+)) = 0.26(-0.10)(+0.11)mu(2)(N), and B(M1; 2(4)+ -> 2(1)(+)) <0.04 mu(2)(N) identify the 2(3)(+) state as the main fragment of the one-quadrupole-phonon proton-neutron mixed-symmetry state of Nd-140. The degree of F-spin mixing in Nd-140 was quantified with the determination of the mixing matrix element VF-mix <7(-7)(-13) keV. Peer reviewed
Search for Isovector Valence-Shell Excitations in 140 Nd and 142 Sm via Coulomb excitation reactions of radioactive ion beams
Projectile Coulomb excitation experiments were performed at HIE-ISOLDE at CERN with the radioactive ion beams of 140Nd and 142Sm. Ions with an energy of 4:62 MeV/A were impinging on a 1.45 mg/cm2 thick 208Pb target. The γ-rays depopulating the Coulomb-excited states were recorded by the HPGe-array MINIBALL and scattered particles were detected by a double-sided silicon strip detector. Experimental intensities were used for the determination of electromagnetic transition matrix elements. A preliminary result of the B(M1; 2+3 → 2+1) of 140Nd and an upper limit for the case of 142Sm are revealing the main fragments of the proton-neutron mixed-symmetry 2+1;ms states.
Dealing with contaminants in Coulomb excitation of radioactive beams
Abstract Data analysis of the Coulomb excitation experiment of the exotic 206Hg nucleus, recently performed at CERN’s HIE-ISOLDE facility, needs to account for the contribution to target excitation due to the strongly-present beam contaminant 130Xe. In this paper, the contamination subtraction procedure is presented.
Quadrupole deformation of Xe-130 measured in a Coulomb-excitation experiment
Physical review / C 102(5), 054304 (2020). doi:10.1103/PhysRevC.102.054304
Quadrupole and octupole collectivity in the semi-magic nucleus 80,206Hg126
The first low-energy Coulomb-excitation measurement of the radioactive, semi-magic, two proton-hole nucleus 206Hg, was performed at CERN’s recently-commissioned HIE-ISOLDE facility. Two γ rays depopulating low-lying states in 206Hg were observed. From the data, a reduced transition strength B(E2; 2+ 1 → 0+ 1 ) = 4.4(6) W.u was determined, the first such value for an N = 126 nucleus south of 208Pb, which is found to be slightly lower than that predicted by shell-model calculations. In addition, a collective octupole state was identified at an excitation energy of 2705 keV, for which a reduced B(E3) transition probability of 30+10−13 W.u was extracted. These results are crucial for understand…
Population of lead isotopes in binary reactions using a Rb 94 radioactive beam
8 pags., 9 figs.