0000000000408861

AUTHOR

Marie-pierre Béal

showing 6 related works from this author

Presentations of constrained systems with unconstrained positions

2005

International audience; We give a polynomial-time construction of the set of sequences that satisfy a finite-memory constraint defined by a finite list of forbidden blocks, with a specified set of bit positions unconstrained. Such a construction can be used to build modulation/error-correction codes (ECC codes) like the ones defined by the Immink-Wijngaarden scheme in which certain bit positions are reserved for ECC parity. We give a lineartime construction of a finite-state presentation of a constrained system defined by a periodic list of forbidden blocks. These systems, called periodic-finite-type systems, were introduced by Moision and Siegel. Finally, we present a linear-time algorithm for con…

[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]finite-memory systemperiodic-finite-type (PFT) system[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciences02 engineering and technologyLibrary and Information Sciences01 natural sciencesModulation coding0202 electrical engineering electronic engineering information engineeringMathematicsDiscrete mathematicsChannel codefinite-state encodermodulation codeDAWG020206 networking & telecommunicationsDirected graphDirected acyclic graphforbidden blockComputer Science ApplicationsFinite sequence010201 computation theory & mathematicscodeError detection and correctionrun-length limited (RLL) codesInformation SystemsCoding (social sciences)maximum transition run (MTR)
researchProduct

Coding Partitions: Regularity, Maximality and Global Ambiguity

2007

The canonical coding partition of a set of words is the finest partition such that the words contained in at least two factorizations of a same sequence belong to a same class. In the case the set is not uniquely decipherable, it partitions the set into one unambiguous class and other parts that localize the ambiguities in the factorizations of finite sequences. We firstly prove that the canonical coding partition of a regular set contains a finite number of regular classes. We give an algorithm for computing this partition. We then investigate maximality conditions in a coding partition and we prove, in the regular case, the equivalence between two different notions of maximality. As an ap…

CombinatoricsDiscrete mathematicsFormal languagesinformation ratemedia_common.quotation_subjectPartition (number theory)AmbiguityPartition of a setFinite automataFinite setCoding (social sciences)media_commonMathematics
researchProduct

Forbidden words in symbolic dynamics

2000

AbstractWe introduce an equivalence relation≃between functions from N to N. By describing a symbolic dynamical system in terms of forbidden words, we prove that the≃-equivalence class of the function that counts the minimal forbidden words of a system is a topological invariant of the system. We show that the new invariant is independent from previous ones, but it is not characteristic. In the case of sofic systems, we prove that the≃-equivalence of the corresponding functions is a decidable question. As a more special application, we show, by using the new invariant, that two systems associated to Sturmian words having “different slope” are not conjugate.

Discrete mathematicsApplied Mathematicsautomata and formal languages010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Symbolic dynamics[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciencesFunction (mathematics)16. Peace & justice01 natural sciencesDecidabilitysymbolic dynamics010201 computation theory & mathematicsEquivalence relationcombinatoric on words0101 mathematicsInvariant (mathematics)Dynamical system (definition)Equivalence (measure theory)Computer Science::Formal Languages and Automata TheoryWord (group theory)ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

CODING PARTITIONS OF REGULAR SETS

2009

A coding partition of a set of words partitions this set into classes such that whenever a sequence, of minimal length, has two distinct factorizations, the words of these factorizations belong to the same class. The canonical coding partition is the finest coding partition that partitions the set of words in at most one unambiguous class and other classes that localize the ambiguities in the factorizations of finite sequences. We prove that the canonical coding partition of a regular set contains a finite number of regular classes and we give an algorithm for computing this partition. From this we derive a canonical decomposition of a regular monoid into a free product of finitely many re…

MonoidGeneral Mathematicsregular monoid0102 computer and information sciences02 engineering and technologyregular language01 natural sciences[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]CombinatoricsRegular language0202 electrical engineering electronic engineering information engineeringPartition (number theory)Finite setComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematics020206 networking & telecommunicationsPartition of a set16. Peace & justiceFree product010201 computation theory & mathematicscodeuniquely decipherable codecoding partitionRegular setsCoding (social sciences)International Journal of Algebra and Computation
researchProduct

Minimal forbidden words and symbolic dynamics

1996

We introduce a new complexity measure of a factorial formal language L: the growth rate of the set of minimal forbidden words. We prove some combinatorial properties of minimal forbidden words. As main result we prove that the growth rate of the set of minimal forbidden words for L is a topological invariant of the dynamical system defined by L.

Discrete mathematicsFactorial010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Symbolic dynamicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciencesInvariant (physics)16. Peace & justice01 natural sciencesCombinatorics010201 computation theory & mathematicsTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMSInformation complexityFormal language0101 mathematicsComputer Science::Formal Languages and Automata TheoryComputingMilieux_MISCELLANEOUSMathematicsofComputing_DISCRETEMATHEMATICSMathematics
researchProduct

Minimal forbidden patterns of multi-dimensional shifts

2005

We study whether the entropy (or growth rate) of minimal forbidden patterns of symbolic dynamical shifts of dimension 2 or more, is a conjugacy invariant. We prove that the entropy of minimal forbidden patterns is a conjugacy invariant for uniformly semi-strongly irreducible shifts. We prove a weaker invariant in the general case.

General Mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS][INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]020206 networking & telecommunications0102 computer and information sciences02 engineering and technology01 natural sciencesCombinatoricsConjugacy class010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringMulti dimensionalComputingMilieux_MISCELLANEOUSMathematics
researchProduct