0000000000408875
AUTHOR
K. V. Rao
A field induced ferromagnetic-like transition below 2.8 K in Li2CuO2: An experimental and theoretical study
The low temperature magnetic properties of the Li2CuO2 compound have been investigated by means of superconducting quantum interference device magnetometry. We find in addition to an antiferromagnetic phase below 9.5 K a ferromagnetic-like steep rise of the magnetization around 2.8 K. The observed low temperature behavior is discussed by considering second and fourth order magnetocrystalline effective anisotropy coefficients, in addition to the exchange couplings reported in the literature. Work at the Institut de Ciencia dels Materials was supported by the Spanish Comisión Interministerial de Ciencia y Technología Grant No. CICYT MAT 96-1037.
Effect of disorder produced by cationic vacancies at theBsites on the electronic properties of mixed valence manganites
An alloy series of single-phased polycrystalline ${\mathrm{La}}_{1\ensuremath{-}x}{\mathrm{Na}}_{x}{\mathrm{MnO}}_{3+\mathrm{\ensuremath{\delta}}} (0l~xl~0.15)$ has been synthesized in order to study the effect of disorder on the electronic properties of mixed valence manganites. The synthetic variables allow one to maintain a constant proportion of ${\mathrm{Mn}}^{4+}$ in the samples $({\mathrm{Mn}}^{3+}{/\mathrm{M}\mathrm{n}}^{4+}=2.1\ifmmode\pm\else\textpm\fi{}0.2),$ while the similar size of ${\mathrm{La}}^{3+}$ and ${\mathrm{Na}}^{+}$ ions results in no appreciable change in the tolerance factor of the perovskite structure throughout the series. In this way, the sodium content x contro…