Frustration, Entanglement, and Correlations in Quantum Many Body Systems
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
A tomographic approach to non-Markovian master equations
We propose a procedure based on symplectic tomography for reconstructing the unknown parameters of a convolutionless non-Markovian Gaussian noisy evolution. Whenever the time-dependent master equation coefficients are given as a function of some unknown time-independent parameters, we show that these parameters can be reconstructed by means of a finite number of tomograms. Two different approaches towards reconstruction, integral and differential, are presented and applied to a benchmark model made of a harmonic oscillator coupled to a bosonic bath. For this model the number of tomograms needed to retrieve the unknown parameters is explicitly computed.
Reconstruction of time-dependent coefficients: a check of approximation schemes for non-Markovian convolutionless dissipative generators
We propose a procedure to fully reconstruct the time-dependent coefficients of convolutionless non-Markovian dissipative generators via a finite number of experimental measurements. By combining a tomography based approach with a proper data sampling, our proposal allows to relate the time-dependent coefficients governing the dissipative evolution of a quantum system to experimentally accessible quantities. The proposed scheme not only provides a way to retrieve full information about potentially unknown dissipative coefficients but also, most valuably, can be employed as a reliable consistency test for the approximations involved in the theoretical derivation of a given non-Markovian convo…
Reconstruction of Markovian master equation parameters through symplectic tomography
In open quantum systems, phenomenological master equations with unknown parameters are often introduced. Here we propose a time-independent procedure based on quantum tomography to reconstruct the potentially unknown parameters of a wide class of Markovian master equations. According to our scheme, the system under investigation is initially prepared in a Gaussian state. At an arbitrary time t, in order to retrieve the unknown coefficients one needs to measure only a finite number (ten at maximum) of points along three time-independent tomograms. Due to the limited amount of measurements required, we expect our proposal to be especially suitable for experimental implementations.