Modeling of Human Posturokinetic Movements by a Linear Feedback System: Relations among Feedback Coefficients
This study describes a method of modeling human trunk and whole body backward bending and suggests a possible neural control strategy. The hypothesis was that the control system can be modeled as a linear feedback system, in which the torque acting at a given joint is a function of the state variables (angular positions and angular velocities). The linear system enabled representation of the feedback system by a gain matrix. The matrix was computed from the kinematics recorded by a movement analysis system and from the joint torques calculated by inverse dynamics. To validate the control model, a comparison was made between the angular kinematics yielded by the model and the experimental d…